Abstract
We attempted to improve antibody affinity by varying glycosylation on the light chain variable region. The human hybridoma line HB4C5 produces an antibody reactive to lung adenocarcinoma, which possess a N-glycosylated carbohydrate chain on the light chain hypervariable region. It has been shown that altering this carbohydrate structure can be accomplished by varying the level of N-acetylglucosamine in glucose free medium, a change in the carbohydrate chain could be induced which resulted in modifying antigen binding. By culturing the cells in media containing more than 20 mM N-acetylglucosamine, cells produced antibody with 10 fold improved affinity as compared with antibody produced in 20 mM glucose-containing medium. A newly induced light chain glycoform produced in the N-acetylglucosamine-containing medium was shown to be responsible for this antigen binding enhancement. Addition of glucose in the N-acetylglucosamine-containing media led to decreased antibody affinity and slightly inhibited production of a new light chain in a dose-dependent manner. Combination of 20 mM N-acetylglucosamine and 0.5 mM glucose gave a higher antibody production without the decrease of the antigen binding. These results indicate that optimization of N-glycosylation on the light chain, which leads to higher antigen binding, can be accomplished by adjusting a ratio of glucose and N-acetylglucosamine in the culture medium.
Keywords: N-acetylglucosamine, glucose, human antibody, affinity, glycosylation
Full Text
The Full Text of this article is available as a PDF (115.6 KB).
References
- Chothia C, Lesk AM. Canonical structures for the hypervariable regions of immunoglobulins. J Mol Biol. 1987;196:901–917. doi: 10.1016/0022-2836(87)90412-8. [DOI] [PubMed] [Google Scholar]
- Clamp JR, Bernier GM, Putnam FW. Source of the apparent carbohydrate content of bence-jones proteins. Biochim Biophys Acta. 1964;86:149–155. doi: 10.1016/0304-4165(64)90169-2. [DOI] [PubMed] [Google Scholar]
- Curling EMA, Hayter PM, Baines AJ, Bull AT, Gull K, Strange PG, Jenkins N. Recombinant human interferon-γ. Biochem J. 1990;272:333–337. doi: 10.1042/bj2720333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goochee CF, Gramer MJ, Andersen DC, Bahr JB, Rasmussen JR. The oligosaccharides of glycoproteins: bioprocess factors affecting oligosaccharide structure and their effect on glycoprotein properties. Biotechnol. 1991;9:1347–1355. doi: 10.1038/nbt1291-1347. [DOI] [PubMed] [Google Scholar]
- Hashizume S, Kamei M, Mochizuki K, Sato S, Kuroda K, Kato M, Yasumoto K, Nakahashi H, Hirose H, Tai H, Okano H, Nomoto K, Murakami H. Serodiagnosis of cancer by using Candida cytochrome c recognized by human monoclonal antibody HB4C5. Hum Antibod Hybridomas. 1991;2:142–147. [PubMed] [Google Scholar]
- Hashizume S, Mochizuki K, Kamei M, Kuroda K, Kato M, Sato S, Yasumoto K, Nakahashi H, Tsuchimoto K, Muraoka M, Nomoto K, Murakami H. Serodiagnosis of cancer, using porcine carboxypeptidase A as an animal antigen recognized by human monoclonal antibody HB4C5. Hum Antibod Hybridomas. 1991;2:150–155. [PubMed] [Google Scholar]
- Kato M, Mochizuki, Hashizume S, Tachibana H, Shirahata S, Murakami H. Activity enhancement of a lung cancer-associated human monoclonal antibody HB4C5 by N-deglycosylation. Hum Antibod Hybridomas. 1993;4:9–14. [PubMed] [Google Scholar]
- Kagawa Y, Takasaki S, Utsumi J, Hosoi K, Shimizu H, Kochibe N, Kobata A. Comparative study of the asparagine-linked sugar chains of natural human interferon-β1 and recombinant human interferon-β1 produced by three different mammalian cells. J Biol Chem. 1988;263:17508–17515. [PubMed] [Google Scholar]
- Kitano K, Shintani Y, Ichinmori Y, Tsukamoto K, Sasai S, Kida M. Production of human monoclonal antibodies by heterohybridomas. Appl Microbiol Biotechnol. 1986;24:282–286. [Google Scholar]
- Koide N, Nose M, Muramatsu T. Recognition of IgG by Fc receptor and complement: Effects of glycosidase digestion. Biochem Biophys Res Commun. 1977;75:838–844. doi: 10.1016/0006-291x(77)91458-9. [DOI] [PubMed] [Google Scholar]
- Murakami H, Hashizume S, Ohashi H, Shinohara K, Yasumoto K, Nomoto K, Omura H. Human-human hybridomas secreting antibodies specific to human lung carcinoma. In Vitro Cell Dev Biol. 1985;21:593–596. doi: 10.1007/BF02620891. [DOI] [PubMed] [Google Scholar]
- Murakami H, Masui H, Sato G, Sueoka N, Chow TP, Kano-Sueoka T. Growth of hybridoma cells in serum-free medium: ethanolamine is an essential component. Proc Natl Acad Sci USA. 1982;79:575–583. doi: 10.1073/pnas.79.4.1158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rearick JI, Chapman A, Kornfeld S. Glucose starvation alters lipid linked oligosaccharide biosynthesis in chinese hamster ovary cells. J Biol Chem. 1981;256:6255–6261. [PubMed] [Google Scholar]
- Sox HC, Jr, Hood L. Attachment of carbohydrate to the variable region of myeloma immunoglobulin light chains. Proc Natl Acad Sci USA. 1970;66:975–982. doi: 10.1073/pnas.66.3.975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stark NJ, Heath EC. Glucose-dependent glcosylation of secretory glycoprotein in mouse myelooma cells. Arch Biochem Biophys. 1979;192:599–609. doi: 10.1016/0003-9861(79)90131-0. [DOI] [PubMed] [Google Scholar]
- Tachibana H, Shirahata S, Murakami H. Generation of specificity-variant antibodies by alteration of carbohydrate in light chain of human monoclonal antibodies. Biochem Biophys Res Commun. 1992;189:625–632. doi: 10.1016/0006-291x(92)92246-t. [DOI] [PubMed] [Google Scholar]
- Tachibana H, Seki K, Murakami H. Identification of hybrid-type carbohydrate chains on the light chain of human monoclonal antibody specific to lung adenocarcinoma. Biochem Biophys Acta. 1993;1182:257–263. doi: 10.1016/0925-4439(93)90067-b. [DOI] [PubMed] [Google Scholar]
- Tachibana H, Taniguchi K, Ushio Y, Teruya K, Osada K, Murakami H. Changes of monosaccharides availability of human hybridoma lead to alteration of biological properties of human monoclonal antibody. Cytotechnology. 1994;16:151–157. doi: 10.1007/BF00749902. [DOI] [PubMed] [Google Scholar]
- Tachobana H, Kim J-Y, Murakami H. Generation of affinity-variant antibodies via the alteration of glycosylation in light chain effected by defined culture conditions of human hybridomas. In: Beuvery EC, Griffiths JB, Zeijlemaker WP, editors. Animal Cell Technology: Developments towards the 21st. Century. Dordrecht, Netherlands: Kluwer Academic Publishers; 1995. pp. 443–337. [Google Scholar]
- Tachibana H, Kim J-Y, Taniguchi K, Ushio Y, Teruya K, Osada K, Inoue Y, Shirahata S, Murakami H. Modified antigen-binding of human antibodies with glycosylation variations of the light chains produced in sugar-limited human hybridoma cultures. In Vitro Cell Dev Biol. 1996;32:178–183. doi: 10.1007/BF02723683. [DOI] [PubMed] [Google Scholar]
- Towbin H, Staehelin T, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turco SJ. Modification of oligosaccharide-lipid synthesis and protein glycosylation in glucose-deprived cells. Arch Biochem Biophys. 1980;205:330–339. doi: 10.1016/0003-9861(80)90115-0. [DOI] [PubMed] [Google Scholar]
- Yano T, Yasumoto K, Nagashima A, Hashizume S, Murakami H, Nomoto K. Immunohistological characterization of human monoclonal antibody against lung cancer. J Surg Oncol. 1988;39:108–113. doi: 10.1002/jso.2930390208. [DOI] [PubMed] [Google Scholar]
