Abstract
Coagulation factors, amongst many other proteins, often require posttranslational endoproteolytic processing for maturation. Upon high yield expression of recombinant forms of these proteins, processing frequently becomes severely limiting, resulting in a hampered function of the protein. In this report, the human endoprotease Furin was used to achieve complete propeptide removal from recombinant von Willebrand Factor (rvWF) precursors in CHO cells. At expression beyond 200 ng rvWF/106 cells × day, processing became insufficient. Stable co- and overexpression of full length Furin resulted in complete precursor cleavage in cell clones expressing 2 μg rvWF/106 cells × day. Rather than occuring intracellularly, processing was found to be mediated by a naturally secreted form of rFurin, present in 100 fold higher concentrations than endogenous Furin and accumulating in the cell culture supernatant. Attempts to increase rFurin yield by amplification, in order to ensure complete rvWF precursor processing at expression rates beyond 2 μg rvWF/106 cells × day, failed. Truncation of the trans-membrane domain resulted in immediate secretion of rFurin and approximately 10 fold higher concentrations in the conditioned medium. In cases where these high rFurin concentrations are not sufficient to ensure complete processing, an in vitro downstream processing procedure has to be established. Secreted affinity epitope-tagged rFurin derivatives were constructed, the fate of which, at expression, was dependent on the size of the C-terminal truncation and the type of the heterologous epitope added. A suitable candidate was purified by a one step affinity procedure, and successfully used for in vitro processing. This allows complete proteolytic processing of large amounts of precursor molecules by comparably small quantities of rFurin. Complete precursor cleavage of a target protein at expression rates of up to approximately 200 ng, 2 μg, and 20 μg, as well as beyond 20 μg/106 cells × day can thus be anticipated to be accomplished by endogenous Furin, additional expression of full length rFurin, co-expression of truncated and hence secreted rFurin, and a protein-chemical in vitro procedure, respectively.
Keywords: Furin, histidine-tag, processing, propeptide, von Willebrand factor
Full Text
The Full Text of this article is available as a PDF (193.6 KB).
References
- Ashman CR, Davidson RL. High spontaneous-mutation frequency of BPV shuttle vector. Somat. Cell Mol. Genet. 1985;11:499–504. doi: 10.1007/BF01534844. [DOI] [PubMed] [Google Scholar]
- Calos MP, Lebkowski JS, Botchan MR. High mutation frequency in DNA transfected into mammalian cells. Proc. Natl. Acad. Sci. USA. 1983;80:3015–3019. doi: 10.1073/pnas.80.10.3015. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chapman RE, Munro S. Retrieval of TGN proteins from the cell surface requires endosomal acidification. EMBO J. 1994;13:2305–2312. doi: 10.1002/j.1460-2075.1994.tb06514.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Creemers JWM (1994) Structural and functional characterization of the mammalian proprotein processing enzyme Furin. Ph.D. Thesis at the University of Leuven, Belgium.
- Creemers JWM, Siezen RJ, Roebroek AJM, Ayoubi TAY, Huylebroeck D, van de Ven WJM. Modulation of Furinmediated proprotein processing activity by site-directed mutagenesis. J. Biol. Chem. 1993;268:21826–21834. [PubMed] [Google Scholar]
- Crowe J, Dobeli H, Gentz R, Hochuli E, Stüber D, Henco K. 6xHis-Ni-NTA chromatography as a superior technique in recombinant protein expression/purification. Methods Mol. Biol. 1994;31:371–387. doi: 10.1385/0-89603-258-2:371. [DOI] [PubMed] [Google Scholar]
- Denault J-B, Leduc R. Furin/PACE/SPC 1: a convertase involved in exocytic and endocytic processing of precursor proteins. FEBS Lett. 1996;379:113–116. doi: 10.1016/0014-5793(95)01487-X. [DOI] [PubMed] [Google Scholar]
- Fischer B, Mitterer A, Schlokat U, DenBouwmeester R, Dorner F. Structural analysis of recombinant von Willebrand factor: identification of hetero-and homomultimers. FEBS Lett. 1994;351:345–348. doi: 10.1016/0014-5793(94)00861-2. [DOI] [PubMed] [Google Scholar]
- Fischer BE, Schlokat U, Mitterer A, Reiter M, Mundt W, Turecek PL, Schwarz HP, Dorner F. Structural analysis of recombinant von Willebrand factor produced at industrial scale fermentation of transformed CHO cells co-expressing recombinant Furin. FEBS Lett. 1995;375:259–262. doi: 10.1016/0014-5793(95)01218-4. [DOI] [PubMed] [Google Scholar]
- Fischer BE, Schlokat U, Reiter M, Mundt W, Dorner F. Biochemical and functional characterization of recombinant von Willebrand Factor produced at large scale. Cell. Mol. Life Sci. 1997;53:943–950. doi: 10.1007/s000180050115. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fischer BE, Thomas KB, Schlokat U, Dorner F. Multimer structure of human von Willebrand factor. Biochem. J. 1998;331:483–488. doi: 10.1042/bj3310483. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Furlan M. Von Willebrand factor: molecular size and functional activity. Ann. Hematol. 1996;72:341–348. doi: 10.1007/s002770050184. [DOI] [PubMed] [Google Scholar]
- Hatsuzawa K, Nagahama M, Takahashi S, Takada K, Murakami K, Nakayama K. Purification and characterization of Furin, a kex2-like processing endoprotease, produced in chinese hamster ovary cells. J. Biol. Chem. 1992;267:16094–16099. [PubMed] [Google Scholar]
- Himmelspach M, Schlokat U, Pfleiderer M, Fischer B, Antoine G, Falkner FG and Dorner F. Recombinant human factor X: high yield expression and maturation by Furin mediated in vitro processing. Submitted. [DOI] [PubMed]
- Jones BG, Thomas L, Molloy SS, Thulin CD, Fry MD, Walsh KA, Thomas G. Intracellular trafficking of Furin is modulated by the phosphorylation state of a casein II site in its cytoplasmic tail. EMBO J. 1995;14:5869–5883. doi: 10.1002/j.1460-2075.1995.tb00275.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaufman RJ, Wasley LC, Furie BC, Furie B, Shoemaker CB. Expression, purification, and characterization of recombinant γ-carboxylated factor IX synthesized in chinese hamster ovary cells. J. Biol. Chem. 1986;261:9622–9628. [PubMed] [Google Scholar]
- Lethagen SR. Pathogenesis, clinical picture and treatment of von Willebrand's disease. Annals of Medicine. 1995;27:641–651. doi: 10.3109/07853899509019250. [DOI] [PubMed] [Google Scholar]
- Leyte A, Voorberg J, Van Schijndel HB, Duim B, Pannekoek H, Van Mourik JA. The pro-polypeptide of von Willebrand factor is required for the formation of a functional factor VIII-binding site on mature von Willebrand factor. Biochem. J. 1991;274:257–261. doi: 10.1042/bj2740257. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacGregor GR, Caskey CT. Construction of plasmids that express E. coli β-galactosidase in mammalian cells. Nucl. Acids Res. 1989;17:2365. doi: 10.1093/nar/17.6.2365. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meulien P, Balland A, Lepage P, Mischler F, Dott K, Hauss C, Grandgeorge M, Lecocq JP. Increased biological activity of a recombinant factor IX variant carrying alanine at position +1. Prot. Engineering. 1990;3:629–633. doi: 10.1093/protein/3.7.629. [DOI] [PubMed] [Google Scholar]
- Molloy SS, Thomas L, VanSlyke JK, Stenberg PE, Thomas G. Intracellular trafficking and activation of the Furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J. 1994;13:18–33. doi: 10.1002/j.1460-2075.1994.tb06231.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Paleyanda R, Drews R, Lee TK, Lubon H. Secretion of human Furin into mouse milk. J. Biol. Chem. 1997;272:15270–15274. doi: 10.1074/jbc.272.24.15270. [DOI] [PubMed] [Google Scholar]
- Razzaque A, Mizusawa H, Seidman MM. Rearrangement and mutagenesis of a shuttle-vector plasmid after passage in mammalian cells. Proc. Natl. Acad. Sci. USA. 1982;80:3010–3014. doi: 10.1073/pnas.80.10.3010. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rehemtulla A, Kaufman RJ. Preferred sequence requirements for cleavage of pro-von Willebrand factor by propeptide-processing enzymes. Blood. 1992;79:2349–2355. [PubMed] [Google Scholar]
- Rehemtulla A, Dorner AJ, Kaufman RJ. Regulation of PACE propeptide-processing activity: requirement for a post-endoplasmic reticulum compartment and autoproteolytic activation. Proc. Natl. Acad. Sci. USA. 1992;89:8235–8239. doi: 10.1073/pnas.89.17.8235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roussi J, Turecek PL, Andre P, Bonneau M, Pignaud G, Bal dit Sollier C, Schlokat U, Dorner F, Schwarz HP, Drouet L. Effects of human recombinant, plasma-derived, and porcine von Willebrand factor in pigs with severe von Willebrand disease. Blood Coagul. Fibrinol. 1998;9:361–372. doi: 10.1097/00001721-199806000-00009. [DOI] [PubMed] [Google Scholar]
- Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd edition. Cold Spring Harbor, New York, U.S.A.: Cold Spring Harbor Laboratory Press; 1989. [Google Scholar]
- Schäfer W, Stroh A, Berghofer S, Seiler J, Vey M, Kruse ML, Kern HF, Klenk HD, Garten W. Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase Furin. EMBO J. 1995;14:2424–2435. doi: 10.1002/j.1460-2075.1995.tb07240.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schlokat U, Fischer BE, Herlitschka S, Antoine G, Preininger A, Mohr G, Himmelspach M, Kistner O, Falkner FG, Dorner F. Production of highly homogeneous and structurally intact recombinant von Willebrand Factor multimers by Furin-mediated propeptide removal in vitro. Biotechnol. Appl. Biochem. 1996;24:257–267. [PubMed] [Google Scholar]
- Seidah NG, Chretien M, Day R. The family of subtilisin/kexin like pro-protein and pro-hormone convertases: divergent or shared functions. Biochimie. 1994;76:197–209. doi: 10.1016/0300-9084(94)90147-3. [DOI] [PubMed] [Google Scholar]
- Spence MJ, Sucic JF, Foley BT, Moehring TJ. Analysis of mutations in alleles of the fur gene from an endoprotease-deficient chinese hamster ovary cell strain. Somat. Cell Mol. Gen. 1995;21:1–18. doi: 10.1007/BF02255818. [DOI] [PubMed] [Google Scholar]
- Stieneke-Gröber A, Vey M, Angliker H, Shaw E, Thomas G, Roberts C, Klenk HD, Garten W. Influenza virus hemagglutinin with multibasic cleavage site is activated by Furin, a subtilisin-like endoprotease. EMBO J. 1992;11:2407–2414. doi: 10.1002/j.1460-2075.1992.tb05305.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi S, Hatsuzawa T, Watanabe T, Murakami K, Nakayama K. Sequence requirements for endoproteolytic processing of precursor proteins by Furin: transfection and in vitro experiments. J. Biochem. 1994;116:47–52. doi: 10.1093/oxfordjournals.jbchem.a124501. [DOI] [PubMed] [Google Scholar]
- Takahashi S, Nakagawa T, Banno T, Watanabe T, Murakami K, Nakayama K. Localization of Furin to the trans-Golgi network and recycling from the cell surface involves ser and tyr residues within the cytoplasmic tail. J. Biol. Chem. 1995;270:28397–28401. doi: 10.1074/jbc.270.47.28397. [DOI] [PubMed] [Google Scholar]
- Turecek PL, Gritsch H, Pichler L, Auer W, Fischer B, Mitterer A, Mundt W, Schlokat U, Dorner F, Brinkman HJM, van Mourik JA, Schwarz HP. In vivo characterization of recombinant von Willebrand factor in dogs with von Willebrand disease. Blood. 1997;90:3555–3567. [PubMed] [Google Scholar]
- Urlaub G, Chasin LA. Isolation of chinese hamster cell mutants deficient in dihydrofolate reductase activity. Proc. Natl. Acad. Sci. USA. 1980;77:4216–4220. doi: 10.1073/pnas.77.7.4216. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van der Eb AJ, Graham FL. Assay of transforming activity of tumor virus DNA. Methods Enzymol. 1980;65:826–839. doi: 10.1016/S0076-6879(80)65077-0. [DOI] [PubMed] [Google Scholar]
- Van de Ven WJM, Voorberg J, Fontijn R, Pannekoek H, van den Ouweland AMW, van Duijnhoven HLP, Roebroek AJM, Siezen RJ. Furin is a subtilisin-like pro-protein processing enzyme in higher eucaryotes. Mol. Biol. Rep. 1990;14:265–275. doi: 10.1007/BF00429896. [DOI] [PubMed] [Google Scholar]
- Van Duijnhoven HLP, Creemers JWM, Kranenborg MGC, Timmler EDJ, Groeneveld A, van den Ouweland AMW, Roebroek AJM, van de Ven WJM. Development and characterization of a panel of monoclonal antibodies against the novel subtilisin-like proprotein processing enzyme Furin. Hybridoma. 1992;11:71–86. doi: 10.1089/hyb.1992.11.71. [DOI] [PubMed] [Google Scholar]
- Vey M, Schäfer W, Berghöfer S, Klenk HD, Garten W. Maturation of the trans-Golgi network protease Furin: compartmentalization of propeptide removal, substrate cleavage, and COOH-terminal truncation. J. Cell Biol. 1994;127:1829–1842. doi: 10.1083/jcb.127.6.1829. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vidricaire G, Denault JB, Leduc R. Characterization of a secreted form of human Furin endoprotease. Biochem Biophys. Res. Comm. 1993;195:1011–1018. doi: 10.1006/bbrc.1993.2145. [DOI] [PubMed] [Google Scholar]
- Wasley LC, Rehemtulla A, Bristol JA, Kaufman RJ. PACE/Furin can process the vitamin K-dependent pro-factor IX precursor within the secretory pathway. J. Biol. Chem. 1993;268:8458–8465. [PubMed] [Google Scholar]
- Wise RJ, Barr PJ, Wong PA, Kiefer MC, Brake AJ, Kaufman RJ. Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid. Proc. Natl. Acad. Sci. USA. 1990;87:9378–9382. doi: 10.1073/pnas.87.23.9378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wise RJ, Dorner AJ, Krane M, Pittman DD, Kaufman RJ. The role of von Willebrand factor multimers and propeptide cleavage in binding and stabilization of factor VIII. J. Biol. Chem. 1991;266:21948–21955. [PubMed] [Google Scholar]
- Wolins N, Bosshart H, Kuster H, Bonifacio JS. Aggregation as a determinant of protein fate in post-Golgi compartments: role of the luminal domain of Furin in lysosomal targeting. J. Cell Biol. 1997;139:1735–1745. doi: 10.1083/jcb.139.7.1735. [DOI] [PMC free article] [PubMed] [Google Scholar]