Skip to main content
Cytotechnology logoLink to Cytotechnology
. 1999 Jul;30(1-3):95–106. doi: 10.1023/A:1008055702079

Influence of bcl-2 on antibody productivity in high cell density perfusion cultures of hybridoma

D Fassnacht 1, S Rössing 1, R P Singh 2, M Al-Rubeai 2, R Pörtner 1
PMCID: PMC3449950  PMID: 19003359

Abstract

Apoptosis is an active, genetically determined death mechanism which can be induced by a wide range of physiological factors and by mild stress. It is the predominant form of cell death during the production of antibodies from murine hybridoma cell lines. A number of studies have now demonstrated that the suppression of this death pathway, by means of over-expression of survival genes such as bcl-2, results in improved cellular robustness and antibody productivity during batch culture. In the present study, the influence of bcl-2 expression on hybridoma productivity in two high density perfusion bioreactor systems was investigated. In the first system, a fixed-bed reactor, the DNA content in the spent medium was 25% higher in the control (TB/C3-pEF) culture than that found in the bcl-2 transfected (TB/C3-bcl2) cultures at all perfusion rates. This is indicative of a higher level of cell death in the control cell line. The average antibody concentration for the TB/C3-pEF cell line was 14.9 mg L-1 at perfusion rates of 2.6 and 5.2 d-1. However, for the TB/C3-bcl2 cell line it was 33 mg L-1 at dilution rates of 2 and 4 d-1. A substantial increase in antibody concentration was also found in the Integra Tecnomouse hollow fibre reactor. The antibody titre in the TB/C3-bcl2 cassette was nearly 100% higher than that in the TB/C3-pEF cassette during the cultivation period which lasted 6 weeks. Clearly, these results demonstrate the positive impact of bcl-2 over-expression on production of antibody in hybridoma perfusion cultures.

Keywords: apoptosis, Bcl-2, fixed-bed, hollow fibre, hybridoma, perfusion, protein-free medium

Full Text

The Full Text of this article is available as a PDF (301.1 KB).

References

  1. Al-Rubeai M, Emery AN. Mechanisms and kinetics of monoclonal antibody Synthesis and secretion in synchronous and asynchronous hybridoma cell cultures. J Biotechnol. 1990;16:67–86. doi: 10.1016/0168-1656(90)90066-K. [DOI] [PubMed] [Google Scholar]
  2. Al-Rubeai M, Emery AN, Chalder S, Jan DC. Specific antibody productivity and the cell cycle comparisons of batch, continuous and perfusion cultures. Cytotechnol. 1992;9:85–97. doi: 10.1007/BF02521735. [DOI] [PubMed] [Google Scholar]
  3. Al-Rubeai M, Mills D, Emery AN. Electron microscopy of hybridoma cells with special regard to monoclonal antibody production. Cytotechnol. 1990;4:13–28. doi: 10.1007/BF00148807. [DOI] [PubMed] [Google Scholar]
  4. Amos B, Al-Rubeai M, Emery AN. Hybridoma growth and monoclonal antibody production in a dialysis perfusion system. Enzyme Microb Technol. 1994;16:688–695. doi: 10.1016/0141-0229(94)90091-4. [DOI] [PubMed] [Google Scholar]
  5. Boraston R, Thompson PW, Garland S, Birch JR. Growth and oxygen requirements of antibody producing mouse hybridoma cells in suspension culture. Develop Biol Standard. 1984;55:103–111. [PubMed] [Google Scholar]
  6. Cohen GM. Caspases: The executioners of apoptosis. Biochemical J. 1997;326:1–16. doi: 10.1042/bj3260001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Comer M, Kearns M, Wahl J, Munster M, Lorenz T, Szperalski B, Behrendt U, Brunner H. Industrial production of monoclonal antibodies and therapeutic proteins by dialysis fermentation. Cytotechnol. 1990;3:295–299. doi: 10.1007/BF00365493. [DOI] [PubMed] [Google Scholar]
  8. Emery AN, Jan DCH, Al-Rubeai M. Oxygenation of intensive cell-culture system. Appl Microbiol Biotechnol. 1995;43:1028–1033. doi: 10.1007/BF00166920. [DOI] [PubMed] [Google Scholar]
  9. Fassnacht D, Rössing S, Fran Effect of bcl-2 expression on hybridoma cell growth in serum-supplemented, protein-free and diluted media. Cytotechnol. 1998;26:119–226. doi: 10.1023/A:1007914619219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Fassnacht D, Rössing S, Stange J, Pörtner R. Long-term cultivation of immortalised mouse hepatocytes in a high cell density, fixed-bed reactor. Biotechnol Techniq. 1998;12:25–30. doi: 10.1023/A:1008895207570. [DOI] [Google Scholar]
  11. Fazekas de St. Groth S. Automated production of monoclonal antibodies in a cytostat. J Immunol Methods. 1983;57:121–136. doi: 10.1016/0022-1759(83)90070-4. [DOI] [PubMed] [Google Scholar]
  12. Frank F and Dolníková J (1991) Hybridoma growth and monoclonal antibody production in iron-rich protein-free medium: Effect of nutrient concentration. Cytotechnol 7: 33-38. [DOI] [PubMed]
  13. Frank F and Dolníková J (1991) Nucleosomes occuring in protein-free hybridoma cell cultures. Evidence for programmed cell death. FEBS Lett 248: 285-287. [DOI] [PubMed]
  14. Hager JC, Spiegelman S, Ramanarayanan M, Bausch J, Galletti PM, Calabresi P. Tumour-assocated antigens produced by mouse mammary tumour cells in artifical capillary culture. J Natl Cancer Inst. 1982;69:1359–1366. [PubMed] [Google Scholar]
  15. Himmelfarb P, Thayer PS, Martin HE. Spin-filter culture: the propagation of mammalian cells in suspension. Science. 1969;164:555–557. doi: 10.1126/science.164.3879.555. [DOI] [PubMed] [Google Scholar]
  16. Huang DCS, Oreilly LA, Strasser A, Cory S. The antiapoptosis function of Bcl-2 can be genetically separated from its inhibitory effect on cell cycle entry. EMBO J. 1997;16:4628–4638. doi: 10.1093/emboj/16.15.4628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Itoh Y, Ueda H, Suzuki E. Overexpession of bcl-2, apoptosis suppressing gene: prolonged viable culture period of hybridoma and enhanced antibody production. Biotechnol Bioeng. 1995;48:118–122. doi: 10.1002/bit.260480205. [DOI] [PubMed] [Google Scholar]
  18. Jan DCH, Emery AN, Al-Rubeai M. Introducing spin filter eliminates hydrodynamic damage to hybridomas in bioreactor. Biotechnol Tech. 1993;7:351–356. doi: 10.1007/BF00152540. [DOI] [Google Scholar]
  19. Kim YH, Iida T, Fujita T, Terada S, Kitayama A, Ueda H, Prochownik EV, Suzuki E. Establishment of an apoptosis-resistant and growth-controllable cell line by transfecting with inducible antisense c-jun gene. Biotechnol Bioeng. 1998;58:65–72. doi: 10.1002/(SICI)1097-0290(19980405)58:1<65::AID-BIT7>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  20. Linette GP, Li Y, Roth K, Korsmeyer SJ. Cross talk between cell death and cell cycle progression: Bcl-2 regulates NFAT-mediated activation. Proc Natl Acad Sci USA. 1996;93:9545–9552. doi: 10.1073/pnas.93.18.9545. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mazel S, Burtrum D, Petrie HT. Regulation of cell division cycle progression by bcl-2 expression: a potential mechanism for inhibition of programmed cell death. J Exp Med. 1996;183:2219–2226. doi: 10.1084/jem.183.5.2219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Mercille S, Massie B. Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells. Biotechnol Bioeng. 1994;44:1140–1154. doi: 10.1002/bit.260440916. [DOI] [PubMed] [Google Scholar]
  23. Mitchell-Logean C, Murhammer DW. Bcl-2 expression in Spodoptera frugiperda and Trichoplusia ni BTI-Tn-5B1-4 insect cells: Effect on recombinant protein expression and cell viability. Biotechnol Bioeng. 1997;56:380–390. doi: 10.1002/(SICI)1097-0290(19971120)56:4<380::AID-BIT4>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  24. Nagel A, Effenberger E, Koch S, Lübbe L, Marx U (1994) Human cancer and primary cell culture in the new hybrid bioreactor system technomouse. In: Spier RE, Griffiths JB and Berthold W (eds.) Animal cell technology: products of today, prospects for tomorrow. (pp. 296-298) Butterworth-Heinemann.
  25. Ong CP, Pörtner R, Märkl H, Yamazaki Y, Yasuda K, Matsumura M. High density cultivation of hybridoma in charged porous carriers. J Biotechnol. 1994;34:259–268. doi: 10.1016/0168-1656(94)90061-2. [DOI] [PubMed] [Google Scholar]
  26. O'Reilly L, Huang DCS, Strasser A. The cell death inhibitor bcl-2 and its homologues influence control of cell cycle entry. EMBO J. 1996;15:6979–6990. [PMC free article] [PubMed] [Google Scholar]
  27. O'Reilly LA, Harris AW, Strasser A. Bcl-2 transgene expression promotes survival and reduces proliferation of CD3-CD4-CD8-T cell progenitors. Int Immunol. 1997;9:1291–1301. doi: 10.1093/intimm/9.9.1291. [DOI] [PubMed] [Google Scholar]
  28. O'Reilly LA, Harris AW, Tarlinton DM, Corcoran LM, Strasser A. Expression of a bcl-2 transgene reduces proliferation and slows turnover of developing B lymphocytes in vivo. J Immunol. 1997;159:2301–2311. [PubMed] [Google Scholar]
  29. Perreault J, Lemieux R. Essential role of optimal protein-synthesis in preventing the apoptotic death of cultured b-cell hybridomas. Cytotechnol. 1994;13:99–105. doi: 10.1007/BF00749936. [DOI] [PubMed] [Google Scholar]
  30. Pörtner R, Rössing S, Koop M, Lüdemann I. Kinetic studies on hybridoma cells immobilised in fixed-bed reactors. Biotechnol Bioeng. 1997;55:535–541. doi: 10.1002/(SICI)1097-0290(19970805)55:3<535::AID-BIT10>3.0.CO;2-F. [DOI] [PubMed] [Google Scholar]
  31. Reuveny S, Velez D, Miller L, MacMillan JD. Comparison of cell propagation methods for their effect on monoclonal antibody yeild in fermentors. J Immunol Methods. 1986;86:61–69. doi: 10.1016/0022-1759(86)90265-6. [DOI] [Google Scholar]
  32. Simpson N, Milner AN, Al-Rubeai M. Prevention of hybridoma cell death by bcl-2 during sub-optimal culture conditions. Biotechnol Bioeng. 1997;54:1–16. doi: 10.1002/(SICI)1097-0290(19970405)54:1<1::AID-BIT1>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  33. Simpson NH, Singh RP and Al-Rubeai M (1998) Manuscript in preparation.
  34. Singh RP, Al-Rubeai M, Gregory CD, Emery AN. Cell death in bioreactors: a role for apoptosis. Biotechnol Bioeng. 1994;44:720–726. doi: 10.1002/bit.260440608. [DOI] [PubMed] [Google Scholar]
  35. Singh RP, Al-Rubeai M, Emery AN. Apoptosis: Exploiting novel pathways to the improvement of cell culture processes. Genet Eng Biotechnol. 1996;16:227–251. [Google Scholar]
  36. Singh RP, Emery AN, Al-Rubeai M. Enhancement of survivability of mammalian cells by over-expression of the apoptosis supressor gene bcl-2. Biotechnol Bioeng. 1996;52:166–175. doi: 10.1002/(SICI)1097-0290(19961005)52:1<166::AID-BIT17>3.0.CO;2-M. [DOI] [PubMed] [Google Scholar]
  37. Suzuki E, Terada S, Ueda H, Fujita T, Komatsu T, Takayama S, Reed JC. Establishing apoptosis resistant cell lines for improving protein productivity of cell culture. Cytotechnol. 1997;23:55–59. doi: 10.1023/A:1007942929800. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tharakan JP, Chau PC. A radial flow hollow fibre reactor for the large scale culture of mammalian cells. Biotechnol Bioeng. 1986;28:329–342. doi: 10.1002/bit.260280305. [DOI] [PubMed] [Google Scholar]
  39. Tsujimoto Y, Cossman J, Jaff E, Croce CM. Involvement of the bcl-2 gene in human follicular lymphoma. Science. 1985;228:1440–1443. doi: 10.1126/science.3874430. [DOI] [PubMed] [Google Scholar]
  40. Vaux DL, Cory S, Adam J. bcl-2 gene promotes haemopoietic cell survival and co-operates with c-myc to immortilize pre-B-cells. Nature. 1988;335:440–442. doi: 10.1038/335440a0. [DOI] [PubMed] [Google Scholar]
  41. Westlund A, Haggstrom L. Ammonium ion transport by the Na+K+ 2Cl− cotransporter induces apoptosis in hybridoma cells. Biotechnol Lett. 1998;20:87–90. doi: 10.1023/A:1005347617797. [DOI] [Google Scholar]
  42. Yang E, Korsmeyer SJ. Molecular thanatopsis — a discourse on the bcl2 family and cell-death. Blood. 1996;88:386–401. [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES