Abstract
Dielectrophoresis is a well established and effective means for the manipulation of viable cells. However, its effectiveness greatly depends upon the utilization of very low electrical conductivity media. High conductivity media, as in the case of cell culture media, result only in the induction of weaker repulsive forces (negative dielectrophoresis) and excessive medium heating. A dielectrophoresis-based cell separation device (DEP-filter) has been recently developed for perfusion cultures that successfully overcomes these obstacles and provides a very high degree of viable cell separation while most of the nonviable cells are removed from the bioreactor by the effluent stream. The latter results in high viabilities throughout the culture period and minimization of lysed cell proteases in the bioreactor. However, an important question that remains to be answered is whether we have any adverse effects by exposing the cultured cells to high frequency electric fields for extended periods of time. A special chamber was constructed to quantitate the effect under several operational conditions. Cell growth, glucose uptake, lactate and monoclonal antibody production data suggest that there is no appreciable effect and hence, operation over long periods of time of the DEP-filter should not have any adverse effect on the cultured cells.
Keywords: animal cells, cell retention, high frequency exposure, negative dielectrophoresis, perfusion cultures
Full Text
The Full Text of this article is available as a PDF (163.7 KB).
References
- Abidor IG, Sowers AE. Kinetics and mechanism of cell membrane electrofusion. J Biophys. 1992;61:1557–1569. doi: 10.1016/S0006-3495(92)81960-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Archer GP, Render MC, Betts WB, Sancho M. Dielectrophoretic concentration of micro-organisms using grid electrodes. Microbios. 1993;76:237–244. [Google Scholar]
- Avgerinos GC, Drapeau D, Socolow J, Mao JI, Hsiao K, Broeze RJ. Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells. Bio/Technol. 1990;8:54–58. doi: 10.1038/nbt0190-54. [DOI] [PubMed] [Google Scholar]
- Berthold W, Kempken R. Interactions of cell culture with downstream purification: a case study. Cytotechnol. 1994;15:229–242. doi: 10.1007/BF00762398. [DOI] [PubMed] [Google Scholar]
- Cantoni O, Sestili P, Fiorani M, Dachà M. The effect of 50 Hz sinusoidal electric and/or magnetic fields on the rate of repair of DNA single/double strand breaks in oxidatively injured cells. Biochem Molec Biol Int. 1995;37:681–689. [PubMed] [Google Scholar]
- Cantoni O, Sestili P, Fiorani M, Dachà M. Effect of 50 Hz sinusoidal electric and/or magnetic fields on the rate of repair of DNA single/double strand breaks in cultured mammalian cells exposed to three different carcinogens: methylmethane, sulphonate, chromate and 254 nm UV. Biochem Molec Biol Int. 1996;38:527–538. [PubMed] [Google Scholar]
- Caron AW, Tom RL, Kamen AA, Massie B. Baculovirus expression system scaleup by perfusion of high-density Sf-9 cell cultures. Biotechnol Bioeng. 1994;43:881–891. doi: 10.1002/bit.260430907. [DOI] [PubMed] [Google Scholar]
- Cotter TG, Al-Rubeai M. Cell death (apoptosis) in culture systems. Tibtech. 1995;13:150–155. doi: 10.1016/S0167-7799(00)88926-X. [DOI] [PubMed] [Google Scholar]
- Deo YM, Mahadevan MD, Fuchs R. Practical considerations in operation and scale-up of spin filter based bioreactors for monoclonal antibody production. Biotechnol Prog. 1996;12:57–64. doi: 10.1021/bp950079p. [DOI] [PubMed] [Google Scholar]
- Doblhoff-Dier O, Gaida T, Katinger H, Burger W, Gröschl M, Benes E. A novel ultrasonic resonance field device for the retention of animal cells. Biotechnol Prog. 1994;10:428–432. doi: 10.1021/bp00028a600. [DOI] [PubMed] [Google Scholar]
- Docoslis A, Kalogerakis N, Behie LA, Kaler KVIS. A novel dielectrophoresis-based device for the selective retention of viable cells in cell culture media. Biotechnol Bioeng. 1997;54:239–250. doi: 10.1002/(SICI)1097-0290(19970505)54:3<239::AID-BIT5>3.0.CO;2-G. [DOI] [PubMed] [Google Scholar]
- Esclade LRJ, Carrel S, Péringer P. Influence of the screen material on the fouling of spin filters. Biotechnol Bioeng. 1991;38:159–168. doi: 10.1002/bit.260380208. [DOI] [PubMed] [Google Scholar]
- Forestell SP. Optimization of microcarrier cultures used in human vaccine production. Calgary, Alberta, Canada: University of Calgary; 1992. [Google Scholar]
- Fuhr G, Glasser H, Müller T, Schnelle T. Cell manipulation and cultivation under AC electric field influence in highly conductive media. Biochim Biophys Acta. 1994;1201:353–360. doi: 10.1016/0304-4165(94)90062-0. [DOI] [PubMed] [Google Scholar]
- Gaida T., Doblhoff-Dier O, Strutzenberger K, Katinger H, Burger W, Gröschl M, Handl B, Benes E. Selective retention of viable cells in ultrasonic resonance field devices. Biotechnol Prog. 1996;12:73–76. doi: 10.1021/bp950040k. [DOI] [PubMed] [Google Scholar]
- Gascoyne PRC, Becker FF, Wang X-B. Membrane changes accompanying the induced differentiation of Friend murine erythroleukemia cells studied by dielectrophoresis. Bioelectrochem Bioenerget. 1995;36:115–125. doi: 10.1016/0302-4598(94)05015-M. [DOI] [PubMed] [Google Scholar]
- Gimsa J, Marszalek P, Loewe U, Tsong TY. Dielectrophoresis and electrorotation of neurospora slime and murine myeloma cells. Biophys J. 1991;60:749–760. doi: 10.1016/S0006-3495(91)82109-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grosse C, Schwan HP. Cellular membrane potentials induced by alternating fields. Biophysical J. 1992;63:1632–1642. doi: 10.1016/S0006-3495(92)81740-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hansen HA, Damgaard B, Emborg C. Enhanced antibody production associated with altered amino acid metabolism in a hybridoma high-density perfusion culture established by gravity separation. Cytotechnol. 1993;11:155–166. doi: 10.1007/BF00749005. [DOI] [PubMed] [Google Scholar]
- Hawrylik SJ, Wasiko DJ, Pillar JS, Cheng JB, Lee ES. Vortex flow filtration of mammalian and insect cells. Cytotechnol. 1994;15:253–258. doi: 10.1007/BF00762400. [DOI] [PubMed] [Google Scholar]
- Holian O, Astumian RD, Lee RC, Reyes HM, Attar BM, Walter RJ. Protein kinase C activity is altered in HL60 cells exposed to 60 Hz AC electric fields. Bioelectromagnetics. 1996;17:504–509. doi: 10.1002/(SICI)1521-186X(1996)17:6<504::AID-BEM11>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
- Huang Y, Wang X-B, Tame JA, Pethig R. Electrokinetic behavior of colloidal particles in traveling electric fields: studies using yeast cells. J Phys D Appl Phys. 1993;26:1528–1535. doi: 10.1088/0022-3727/26/9/030. [DOI] [Google Scholar]
- Hülscher M, Scheibler U, Onken U. Selective recycle of viable animal cells by coupling of airlift reactor and cell settler. Biotechnol Bioeng. 1991;39:442–446. doi: 10.1002/bit.260390410. [DOI] [PubMed] [Google Scholar]
- Kaler KVIS, Jones TB. Dielectrophoretic spectra of single cells determined by feedback-controlled levitation. Biophys J. 1990;57:173–182. doi: 10.1016/S0006-3495(90)82520-0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kaler KVIS, Xie JP, Jones TB, Paul R. Dual-frequency dielectrophoretic levitation of Canola protoplasts. Biophys J. 1992;63:58–69. doi: 10.1016/S0006-3495(92)81586-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Knedlitschek G, Noszvai-Nagy M, Meyer-Waarden H, Schinnelpfeng J, Weibezahn KF, Dertinger H. Cyclic AMP response in cells exposed to electric fields of different frequencies and intensities. Radiat Environ Biophys. 1994;33:141–147. doi: 10.1007/BF01219337. [DOI] [PubMed] [Google Scholar]
- Krishna GG, Anwar AKW, Mohan DR, Ahmad A. Dielectrophoretic study of human erythrocytes. J Biomed Eng. 1989;11:375–380. doi: 10.1016/0141-5425(89)90099-x. [DOI] [PubMed] [Google Scholar]
- Lee SM. The primary stages of protein recovery. J Biotechnol. 1989;11:103–118. doi: 10.1016/0168-1656(89)90113-2. [DOI] [Google Scholar]
- Loscher W, Mevissen M. Animal studies on the role of 50/60 Hz magnetic fields in carcinogenesis. Life Science. 1994;54:1531–1543. doi: 10.1016/0024-3205(94)90024-8. [DOI] [PubMed] [Google Scholar]
- Mahar JT (1993) Scale-up and validation of sedimentation centrifuges. Part I: Scale-up. Biopharm (September), 42-51.
- Markx GH, Talary MS, Pethig R. Separation of viable and non-viable yeast using dielectrophoresis. J Biotechnol. 1994;32:29–37. doi: 10.1016/0168-1656(94)90117-1. [DOI] [PubMed] [Google Scholar]
- Neil GA, Zimmermann U. Electroinjection. Methods Enzymol. 1993;221:339–361. doi: 10.1016/0076-6879(93)21029-8. [DOI] [PubMed] [Google Scholar]
- Neumann E, Sowers AE, Jordan CA. Electroporation and Electrofusion in Cell Biology. New York-London: Plenum Press; 1989. [Google Scholar]
- Oh DJ, Choi SK, Chang HN. High-density continuous cultures of hybridoma cells in a depth filter perfusion system. Biotechnol Bioeng. 1994;44:895–901. doi: 10.1002/bit.260440805. [DOI] [PubMed] [Google Scholar]
- Pohl HA. In: Methods of Cell Separation. Catsimpoolas N, editor. New York: Plenum Press; 1977. pp. 67–169. [Google Scholar]
- Sagan LA. Epidemiological and laboratory studies of power frequency electric and magnetic fields. JAMA. 1992;268:625–629. doi: 10.1001/jama.268.5.625. [DOI] [PubMed] [Google Scholar]
- Schwan HP. Biophysics of the interaction of electromagnetic energy with cells and membranes. In: Grandolfo M, Michaelson SM, Rindi A, editors. Biological Effects and Dosimetry of Nonionizing Radiation. New York: Plenum Press; 1983. pp. 213–231. [Google Scholar]
- Searles JA, Todd P, Kompala DS. Viable cell recycle with an inclined settler in the perfusion culture of suspended recombinant Chinese hamster ovary cells. Biotechnol Prog. 1994;10:198–206. doi: 10.1021/bp00026a600. [DOI] [PubMed] [Google Scholar]
- Sukhorukov VL, Arnold WM, Zimmermann U. Hypotonically induced changes in the plasma membrane of cultured mammalian cells. J Membrane Biol. 1993;132:27–40. doi: 10.1007/BF00233049. [DOI] [PubMed] [Google Scholar]
- Trampler F, Sonderhoff SA, Pui PWS, Kilburn DG, Piret JM. Acoustic cell filter for high density perfusion culture of hybridoma cells. Bio/Technol. 1994;12:281–284. doi: 10.1038/nbt0394-281. [DOI] [PubMed] [Google Scholar]
- Trombi L, Petrini M, Manara G, Mese ED, Revoltella RP. Effects of repeated exposure to high-voltage electric discharges and low-frequency electromagnetic fields on cultured mouse P3x63Ag8 plasmocytoma cells. Electro-and Magnetobiology. 1993;12:125–134. doi: 10.3109/15368379309012867. [DOI] [Google Scholar]
- Whitson GL, Carrier WL, Francis AA, Shih CC, Georghiou S, Regan JD. Effects of extremely low frequency electric fields on cell growth and DNA repair in human skin fibroblasts. Cell Tissue Kinetics. 1986;19:39–47. doi: 10.1111/j.1365-2184.1986.tb00713.x. [DOI] [PubMed] [Google Scholar]
- Zimmermann U. Electrical breakdown, electropermeabilization and electrofusion. Rev Physiol Biochem Pharmacol. 1986;105:176–256. [PubMed] [Google Scholar]