Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2001 Sep;37(1):13–22. doi: 10.1023/A:1016195029359

Explants of porcine coronary artery in culture: A paradigm for studying the influence of heparin on vascular wall cell proliferation

M Dufresne 1,, R Warocquier-Clérout 2
PMCID: PMC3449968  PMID: 19002910

Abstract

Explant cultures of porcine coronary artery provided a coculture model, used as a paradigm of arterial wall in contact with vascular prosthesis which allowed the study of spatial and temporal changes in cell phenotype. First cells emerging from the explant had an endothelial phenotype monitored by cytoimmunostaining. Percentages of anti-smooth muscle α-actin labelled cells were assessed at early and late phase by flow cytofluorometric analysis to control the effect of heparin. At 100 μg ml-1, no effect on α-actin labelled cell growth has been detected. This result contrasted with the inhibition of monolayer cell cultures. At 500 μg ml-1, the proliferation of smooth muscle cells was reduced. This explant system should be useful for testing drugs susceptible to interfere with restenosis.

Keywords: coronary artery explant culture, endothelial cells, heparin, proliferation, smooth muscle cells

Full Text

The Full Text of this article is available as a PDF (959.1 KB).

References

  1. Abramovitch R, Neeman M, Reich R, Stein I, Keshet E, Abraham J, Solomon A, Marikovsky M. Intercellular communication between vascular smooth muscle and endothelial cells mediated by heparin-binding epidermal growth factor-like growth factor and vascular endothelial growth factor. FEBS Lett. 1998;425:441–447. doi: 10.1016/S0014-5793(98)00283-X. [DOI] [PubMed] [Google Scholar]
  2. Ahn YK, Jeong MH, Kim JW, Kim SH, Cho JH, Park CS, Juhng SW, Park JC, Kang JC. Preventive effects of the heparin-coated stent on restenosis in the porcine model. Catheter Cardiovasc Interv. 1999;48:324–330. doi: 10.1002/(SICI)1522-726X(199911)48:3<324::AID-CCD20>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  3. Asakawa H, Kobayashi T. The effect of coculture with human smooth muscle cells on the proliferation, the IL-1 beta secretion, the PDGF production and tube formation of human aortic endothelial cells. Cell Biochem Funct. 1999;17:123–130. doi: 10.1002/(SICI)1099-0844(199906)17:2<123::AID-CBF817>3.0.CO;2-3. [DOI] [PubMed] [Google Scholar]
  4. Baumbach A, Oberhoff M, Lerch M, Schroder S, Meisner C, Rubsamen K, Karsch KR. Local delivery of a low molecular weight heparin following stent implantation in the pig coronary artery. Basic Res Cardiol. 2000;95:173–178. doi: 10.1007/s003950050179. [DOI] [PubMed] [Google Scholar]
  5. Bono F, Rigon P, Lamarche I, Savi P, Salel V, Herbert JM. Heparin inhibits the binding of basic fibroblast growth factor to cultured human aortic smooth-muscle cells. Biochem J. 1997;326:661–668. doi: 10.1042/bj3260661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Christ G, Wojta J, Binder BR. Distribution of smooth muscle cells derived urokinase in cocultures with endothelial cells. Fibrinolysis. 1992;6:139–143. [Google Scholar]
  7. Christen T, Bochaton-Piallat ML, Neuville P, Rensen S, Redard M, van Eys G, Gabbiani G. Cultured porcine coronary artery smooth muscle cells. A new model with advanced differentiation. Circ Res. 1999;85:99–107. doi: 10.1161/01.res.85.1.99. [DOI] [PubMed] [Google Scholar]
  8. Delmolino LM, Castellot JJ. Heparin suppresses sgk, an early response gene in proliferating vascular smooth muscle cells. J Cell Physiol. 1997;173:371–379. doi: 10.1002/(SICI)1097-4652(199712)173:3<371::AID-JCP9>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  9. Dodge B, Lu X, d'Amore PA. Density-dependent endothelial cell production of an inhibitor of smooth muscle cell growth. J Cell Biochem. 1993;53:21–31. doi: 10.1002/jcb.240530104. [DOI] [PubMed] [Google Scholar]
  10. Dufresne M, Warocquier-Clérout R, Sigot-Luizard MF. Cell phenotype characterization in vascular organotypic culture. J Mater Sci. 1994;5:824–829. doi: 10.1007/BF00213142. [DOI] [Google Scholar]
  11. Fager G, Camejo G, Bondjers G. Heparin-like glycosaminoglycans influence growth and phenotype of human arterial smooth muscle cells in vitro. I. Evidence for reversible binding and inactivation of the PDGF by heparin. Vitro Cell Dev Biol. 1992;28:168–175. doi: 10.1007/BF02631087. [DOI] [PubMed] [Google Scholar]
  12. Fillinger MF, O'Connor SE, Wagner R. The effect of endothelial cell coculture on smooth muscle cell proliferation. J Vasc Surg. 1993;17:1058–1068. doi: 10.1067/mva.1993.46759. [DOI] [PubMed] [Google Scholar]
  13. Finking G, Wolkenhauer M, Lenz C, Hanke H. Post-injury ex vivomodel to investigate effects and toxicity of pharmacological treatment in rings of rabbit aortic vessels. ALTEX. 2000;17:67–74. [PubMed] [Google Scholar]
  14. Goodwin SC, Yoon HC, Wong GC, Bonilla SM, Vedantham S, Arora LC. Percutaneous delivery of a heparinimpregnated collagen stent-graft in a porcine model of atherosclerotic disease. Invest Radiol. 2000;35:420–425. doi: 10.1097/00004424-200007000-00004. [DOI] [PubMed] [Google Scholar]
  15. Gross DR. Animal Models in Cardiovascular Research. Boston: Martinus Nijhoff; 1985. pp. 537–547. [Google Scholar]
  16. Gulba D. Differentiation of low molecular weight heparin in acute coronary syndromes: an interventionalist's perspective. Semin Thromb Hemost. 1999;25:123–127. doi: 10.1055/s-2007-996435. [DOI] [PubMed] [Google Scholar]
  17. Hardhammer PA, van Beusekom HM, Emanuelsson SH, Hofma SH, Albertssson PA, Verdouw PD, Boersma E, Serruys PW, van der Giessen WJ. Reduction in thrombotic events with heparin-coated Palmaz-Schatz stents in normal porcine coronary arteries. Ciculation. 1996;93:423–430. doi: 10.1161/01.cir.93.3.423. [DOI] [PubMed] [Google Scholar]
  18. Ishihara M, Saito Y, Yura H, Ono K, Ishikawa K, Hattori H, Akaike T, Kurita A. Heparin-carrying polystyrene to mediate cellular attachment and growth via interaction with growth factors. J Biomed Mater Res. 2000;50:144–152. doi: 10.1002/(SICI)1097-4636(200005)50:2<144::AID-JBM8>3.0.CO;2-S. [DOI] [PubMed] [Google Scholar]
  19. Kang SS, Gosselin C, Ren D, Greisler HP. Selective stimulation of endothelial cell proliferation with inhibition of smooth muscle cell proliferation by Fibroblast Growth Factor-1 plus heparin delivered from fibrin glue suspensions. Surgery. 1995;118:280–287. doi: 10.1016/S0039-6060(05)80335-6. [DOI] [PubMed] [Google Scholar]
  20. Kinard F, Sergent-Engelen T, Trouet A, Remacle C, Schneider YJ. Compartmentalized coculture of porcine arterial endothelial and smooth muscle cells on a microporous membrane. Vitro Cell Dev Biol. 1997;33:92–103. doi: 10.1007/s11626-997-0029-y. [DOI] [PubMed] [Google Scholar]
  21. Koo EW, Gotlieb AI. The use of organ cultures to study vessel wall pathology. Scanning Microscopy. 1992;6:827–835. [PubMed] [Google Scholar]
  22. Laemmel E, Penhoat J, Warocquier-Clérout R, Sigot-Luizard MF. Heparin immobilized on proteins usable for arterial prostheses coating: growth inhibition of smooth muscle cells. J Biomed Mater Res. 1998;39:446–452. doi: 10.1002/(SICI)1097-4636(19980305)39:3<446::AID-JBM14>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  23. Malinda KM, Ponce L, Kleinman HK, Shackelton LM, Millis AJ. Gp38k, a protein synthesized by vascular smooth muscle cells, stimulates directional migration of human umbilical vein endothelial cells. Exp Cell Res. 1999;250:168–173. doi: 10.1006/excr.1999.4511. [DOI] [PubMed] [Google Scholar]
  24. Oberhoff M, Novak S, Herdeg C, Baumbach A, Kranzhofer A
  25. Bohnet A, Horch B, Hanke H, Haase KK, Karsch KR. Local and systemic delivery of low molecular weight heparin stimulates the reendothelialization after balloon angioplasty. Cardiovasc Res. 1998;38:751–762. doi: 10.1016/S0008-6363(98)00049-2. [DOI] [PubMed] [Google Scholar]
  26. Saunders KB, D'Amore PA. An in vitromodel for cell- cell interactions. Vitro Cell Dev Biol. 1992;28:521–528. doi: 10.1007/BF02634136. [DOI] [PubMed] [Google Scholar]
  27. Seifert B, Romaniuk P, Groth T. Bioresorbable, heparinized polymers for stent coating: In vitrostudies on heparinization efficiency, maintenance of anticoagulant proprerties and improvement of stent haemocompatibility. J Mater Sci. 1996;7:465–469. doi: 10.1007/BF00705426. [DOI] [Google Scholar]
  28. Shi Y, O'Brien JE, Fard A, Zalewski A. Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation. 1996;94:1655–1663. doi: 10.1161/01.cir.94.7.1655. [DOI] [PubMed] [Google Scholar]
  29. Shulman RI. Assessment of low-molecular-weight heparin trials in cardiology. Pharmacol Ther. 2000;87:1–9. doi: 10.1016/S0163-7258(00)00060-7. [DOI] [PubMed] [Google Scholar]
  30. Voyta JC, Via DP, Butterfield CE, Zetter BR. Identi-fication and isolation of endothelial cells based on their increased uptake of acetylated-low density lipoprotein. J Cell Biol. 1984;99:2034–2040. doi: 10.1083/jcb.99.6.2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Xu CB, Stavenow L, Pessah-Rasmussen H. Interactions between cultured bovine arterial endothelial and smooth muscle cells; further studies on the effects of injury and modification of the consequences of injury. Artery. 1993;20:163–179. [PubMed] [Google Scholar]
  32. Yang TT, Sinai P, Kain SR. An acid phosphatase assay for quantifying the growth of adherent and nonadherent cells. Anal Biochem. 1996;241:103–108. doi: 10.1006/abio.1996.0383. [DOI] [PubMed] [Google Scholar]
  33. Zubilewicz T, Ski J, Bourriez A, Terlecki P, Guinault AM, Muscatelli-Groux B, Michalak J, Melliere D, Becquemin JP, Allaire E. Injury in vascular surgery-the intimal hyperplastic response. Med Sci Monit. 2001;7:316–324. [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES