Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2001 Sep;37(1):41–47. doi: 10.1023/A:1016148825633

Protection of hybridoma cells against apoptosis by a loop domain-deficient Bcl-xL protein

Joel Charbonneau 1, Eric Gauthier 2
PMCID: PMC3449969  PMID: 19002913

Abstract

The ectopic expression of several members of the Bcl-2 family of anti-apoptotic proteins is a promising strategy to improve the viability of hybridoma cells in culture. However, the impact of post-translational modifications on the function of these proteins in murine hybridomas is unknown. To address this issue, the anti-apoptotic properties of a mutant of Bcl-xL devoid of the so-called “loop domain„ (Bcl-xL▵ 46-83) were investigated using the Sp2/ O-Ag14 hybridoma model. Clones of Sp2/ O-Ag14 cells expressing Bcl-xL▵ 46-83 exhibited resistance against L-glutamine deprivation to similar levels than cells expressing the wild type protein. In contrast, protection against the cytotoxic effects of cycloheximide (CHX) was highly dependent on the level of expression of the Bcl-xL▵ 46-83 mutant. Analysis of the growth behaviour of the transfected cells showed that Bcl-xL▵ 46-83 was superior to the wild type protein in prolonging Sp2/ O-Agl4 cell viability in stationary batch culture. Furthermore, the prolongation of cell viability in batch culture was directly proportional to the level of expression of the mutated protein. Our results indicate that removal of the loop domain improves the anti-apoptotic activity of Bcl-xL in hybridoma cells grown in stationary batch culture.

Keywords: Apoptosis, Bcl-xL, Cell viability, Hybridoma, Loop domain, Mutagenesis

Full Text

The Full Text of this article is available as a PDF (924.5 KB).

References

  1. Al-Rubeai M., Singh R.P. Apoptosis in cell culture. Curr. Opin. Biotechnol. 1998;9:152–156. doi: 10.1016/S0958-1669(98)80108-0. [DOI] [PubMed] [Google Scholar]
  2. Chang B.S., Minn A.J., Muchmore S.W., Fesik S.W., Thompson C.B. Identification of a novel regulatory domain BclX(L) and Bcl-2. Embo. J. 1997;16:968–977. doi: 10.1093/emboj/16.5.968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Charbonneau J.R., Gauthier E.R. Prolongation of murine hybridoma cell survival in stationary batch culture by Bcl-expression. Cytotechnology. 2000;34:131–139. doi: 10.1023/A:1008186302600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cheng E.H.-Y., Kirsch D.G., Clem R.J., Ravi R., Kastan M.B., Bedi A., et al. Conversion of bcl-2 to a bax-like death effector by caspases. Science. 1997;278:1966–1968. doi: 10.1126/science.278.5345.1966. [DOI] [PubMed] [Google Scholar]
  5. Cotter T.G., Al-Rubeai M. Cell death (apoptosis) in cell nutrientculture systems. Trends Biotechnol. 1995;13:150–155. doi: 10.1016/S0167-7799(00)88926-X. [DOI] [PubMed] [Google Scholar]
  6. Dimmeler S., Breitschopf K., Haendeler J., Zeiher A.M. Dephosphorylation targets Bcl-2 for ubiquitin-dependent degra-oxygendation: a link between the apoptosome and the proteasome pathway. J. Exp. Med. 1999;189:1815–1822. doi: 10.1084/jem.189.11.1815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fadeel B., Zhivotovsky B., Orrenius S. All along the watchtower: on the regulation of apoptosis regulators. FASEB J. 1999;13:1647–1657. doi: 10.1096/fasebj.13.13.1647. [DOI] [PubMed] [Google Scholar]
  8. Fang G., Chang B.S., Kim C.N., Perkins C., Thompson C.B., Bhalla K.N. “Loop” domain is necessary for taxol-in-duced mobility shift and phosphorylation of Bcl-2 as well as for inhibiting taxol-induced cytosolic accumulation of cytochrome c and apoptosis. Cancer Res. 1998;58:3202–3208. [PubMed] [Google Scholar]
  9. Fassnacht D., Rossing S., Franek F., Al-Rubeai M., Portner R. Effect of Bcl-2 expression on hybridoma cell growth in serum-supplemented, protein-free and diluted media. Cytotech-overexpresnology. 1998;26:219–225. doi: 10.1023/A:1007914619219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Figueroa B., Sauerwald T.M., Mastrangelo A.J., Hardwick J.M., Betenbaugh M.J. Comparison of Bcl-2 to a Bcl-2 deletion mutant for mammalian cells exposed to culture insults. Biotech-nol. Bioeng. 2001;73:211–222. doi: 10.1002/bit.1053. [DOI] [PubMed] [Google Scholar]
  11. Franek F. Starvation-induced programmed death of hybrid-oma cells: prevention by amino acid mixtures. Biotechnol. Bioeng. 1995;45:86–90. doi: 10.1002/bit.260450112. [DOI] [PubMed] [Google Scholar]
  12. Fujita N., Tsuruo T. Involvement of Bcl-2 cleavage in the conacceleration of VP-16-induced U937 cell apoptosis. Biochem. Biophys. Res. Commun. 1998;24:484–488. doi: 10.1006/bbrc.1998.8587. [DOI] [PubMed] [Google Scholar]
  13. Fujita T., Terada S., Fukuoa K., Kitayama A., Ueda H., Suzuki E. Reinforcing apoptosis-resistance of COS and myeloma cells by transfecting with bcl-2 gene. Cytotechnology. 1997;25:25–33. doi: 10.1023/A:1007935026770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gauthier E.R., Piche L., Lemieux G., Lemieux R. Role of bcl-xL in the control of apoptosis in murine myeloma cells. Cancer Res. 1996;56:1451–1456. [PubMed] [Google Scholar]
  15. Haldar S., Chintapalli J., Croce C.M. Taxol induces bcl-2 phosphorylation and death of prostate cancer cells. Cancer Res. 1996;56:1253–1255. [PubMed] [Google Scholar]
  16. Ito T., Deng X., Carr B., May W.S. Bcl-2 phosphorylation required for anti-apoptosis function. J. Biol. Chem. 1997;272:11671–11673. doi: 10.1074/jbc.272.18.11671. [DOI] [PubMed] [Google Scholar]
  17. Itoh Y., Ueda H., Suzuki E. Overexpression of bcl-2, apoptosis suppressing gene: prolonged viable culture period of hybridoma and enhanced antibody production. Biotechnol. Bioeng. 1995;48:118–122. doi: 10.1002/bit.260480205. [DOI] [PubMed] [Google Scholar]
  18. Mercille S., Massie B. Induction of apoptosis in nutrientculture deprived cultures of hybridoma and myeloma cells. Biotechnol. Bioeng. 1994;44:1140–1154. doi: 10.1002/bit.260440916. [DOI] [PubMed] [Google Scholar]
  19. Mercille S., Massie B. Induction of apoptosis in oxygendation: deprived cultures of hybridoma cells. Cytotechnology. 1994;15:117–128. doi: 10.1007/BF00762386. [DOI] [PubMed] [Google Scholar]
  20. Mercille S., Jolicoeur P., Gervais C., Paquette D., Mosser D.D., Massie B. Dose-dependent reduction of apoptosis in nutrient-limited cultures of NS/O myeloma cells transfected with the E1B-19K adenoviral gene. Biotechnol. Bioeng. 1999;63:516–528. doi: 10.1002/(SICI)1097-0290(19990605)63:5<516::AID-BIT2>3.0.CO;2-9. [DOI] [PubMed] [Google Scholar]
  21. Muchmore S.W., Sattler M., Liang H., Meadows R.P., Harlan J.E., Yoon H.S., et al. X-ray and NMR structure of human Bcl-X, an inhibitor of programmed cell death. Nature. 1996;381:335–341. doi: 10.1038/381335a0. [DOI] [PubMed] [Google Scholar]
  22. Murray K., Ang C.-E., Gull K., Hickman J.A., Dickson A.J. NSO myeloma cell death: influence of Bcl-2 overexpresnology sion. Biotechnol. Bioeng. 1996;51:298–304. doi: 10.1002/(SICI)1097-0290(19960805)51:3<298::AID-BIT5>3.0.CO;2-8. [DOI] [PubMed] [Google Scholar]
  23. Perreault J., Lemieux R. Essential role of optimal protein synthesis in preventing the apoptotic death of cultured B cell hybridomas. Cytotechnology. 1993;13:99–105. doi: 10.1007/BF00749936. [DOI] [PubMed] [Google Scholar]
  24. Pont-Kingdon G. Construction of chimeric molecules by a two-step recombinant PCR method. Biotechniques. 1994;16:1010–1011. [PubMed] [Google Scholar]
  25. Simpson N.H., Milner A.E., Al-Rubeai M. Prevention of hybridoma cell death by Bcl-2 during suboptimal culture conacceleration ditions. Biotechnol. Bioeng. 1997;54:1–16. doi: 10.1002/(SICI)1097-0290(19970405)54:1<1::AID-BIT1>3.0.CO;2-K. [DOI] [PubMed] [Google Scholar]
  26. Simpson N.H., Singh R.P., Perani A., Goldenzon C., Al-Rubeai M. In hybridoma cultures, deprivation of any amino acids leads to apoptotic death, which is suppressed by the expression of the bcl-2 gene. Biotechnol. Bioeng. 1998;59:90–98. doi: 10.1002/(SICI)1097-0290(19980705)59:1<90::AID-BIT12>3.0.CO;2-6. [DOI] [PubMed] [Google Scholar]
  27. Singh R.P., Al-Rubeai M., Gregory C.D., Emery A.N. Cell death in bioreactors: a role for apoptosis. Biotechnol. Bioeng. 1994;44:720–726. doi: 10.1002/bit.260440608. [DOI] [PubMed] [Google Scholar]
  28. Terada S., Fukuoka K., Fujita T., Komatsu T., Takayama S., Reed J.C., et al. Anti-apoptotic genes, bag-1 and bcl-2, enabled hybridoma cells to survive under treatment for arresting cell cycle. Cytotechnology. 1997;25:17–23. doi: 10.1023/A:1007954103572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yokote H., Terada T., Matsumoto H., Kakishita K., Kinoshita Y., Nakao N., et al. Dephosphorylation-induced decrease of anti-apoptotic function of Bcl-2 in neuronally differentiated P19 cells following ischemic insults. Brain Res. 2000;857:78–86. doi: 10.1016/S0006-8993(99)02414-2. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES