Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2009 Jun 17;49(3):230–232. doi: 10.1007/s12088-009-0036-7

Hypochlorite digestion method for efficient recovery of PHB from Alcaligenes faecalis

R Z Sayyed 1,, N S Gangurde 1, S B Chincholkar 2
PMCID: PMC3450015  PMID: 23100774

Abstract

We reported the optimum amount of PHB accumulated by Alcaligenes faecalis during its 24 h growth under nitrogen deficient conditions. After 24 h incubation decrease in the amount of PHB was recorded. Hypochlorite digestion of biomass of organism followed by extraction with a solvent system consisting of 1:1 mixture of ethanol and acetone resulted in efficient recovery of PHB vis-à-vis earlier methods. This solvent system gave a high recovery yield, i.e. 5.6 gL−1 vis-à-vis earlier reported yield, 1.34 gL−1 (by same method), 0.63 gL−1 (by chloroform extraction method) and 1.1 gL−1 (by dispersion method).

Keywords: Alcaligenes faecalis, PHB, Hypochlorite, NPCM

Full Text

The Full Text of this article is available as a PDF (675.9 KB).

References

  • 1.Anderson A.J., Dawes E.A. Occurrence metabolism, metabolic role and industrial uses of bacterial polyhydroxyalkonates. Microbiol Rev. 1990;54:450–472. doi: 10.1128/mr.54.4.450-472.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Berger E., Ramsay B.A., Ramsay J.A., Chavaric C. PHB recovery by hypochlorite digestion of non-PHB biomass. Biotechnol Tech. 1989;31(4):227–230. doi: 10.1007/BF01876053. [DOI] [Google Scholar]
  • 3.Holmes P. A. Biologically produced PHA polymers and copolymers. In: Bestle D.C., editor. Developments in crystalline polymers. England: Elsevier, London; 1988. pp. 1–65. [Google Scholar]
  • 4.Rawte T., Mavinkurve S. Biodegradable plastics-bacterial polyhydroxyalkonates. Indian J Microbiol. 2001;41:233–245. [Google Scholar]
  • 5.Young-Mi J., Park J.-S., Young-Hyun L. Metabolic engineering of Alcaligenes eutrophus through the cloned phbCAB genes for the investigation of the regulatory mechanism of polyhydroxyalkonate biosynthesis. Enz Microb Technol. 2000;26:201–208. doi: 10.1016/S0141-0229(99)00156-8. [DOI] [PubMed] [Google Scholar]
  • 6.Saito Y., Nakamura S., Hiramitsu M., Doi Y. Microbial synthesis and properties of poly (3-hydroxybutyrate-co-4-hydroxybutyrate) Pol Interntl. 1996;39:169–172. doi: 10.1002/(SICI)1097-0126(199603)39:3<169::AID-PI453>3.0.CO;2-Z. [DOI] [Google Scholar]
  • 7.Jaimes C., Dobreva-Schue R., Giani-Beaune O., Schue F., Amass W., Amass A. Enzymatic degradability of PHB sterioisomers and coploymers of â-butyrolactone with å- caprolactone and ä valerolactone. Pol Interntl. 1999;48:23–32. doi: 10.1002/(SICI)1097-0126(199901)48:1<23::AID-PI97>3.0.CO;2-Y. [DOI] [Google Scholar]
  • 8.Choi J., Lee S.Y. Process analysis and economic evaluation for poly (3-hydroxybutyrate) production by fermentation. Biopro Eng. 1997;17:335–338. doi: 10.1007/s004490050394. [DOI] [Google Scholar]
  • 9.Lee S.Y. Bacterial polyhydroxy-alkonates. Biotechnol Bioeng. 1996;49:1–14. doi: 10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P. [DOI] [PubMed] [Google Scholar]
  • 10.Reusch R.N., Hiske T.W., Sadoff H.L., Harris R., Beveridge T. Cellular incorporation of poly-â-hydroxbutyrate into plasma membranes of Escherichia coli and Azotobacter vinelandii, alters native membrane structure. Can J Microbiol. 1987;33:435–444. doi: 10.1139/m87-073. [DOI] [PubMed] [Google Scholar]
  • 11.Steinbuchel A. Polyhydroxyalkanoic acid. In: Byrom D., editor. Biomaterials: Novel materials from biological source. New York: Stockton Press; 1991. pp. 124–213. [Google Scholar]
  • 12.Doi Y., Kawaguchi Y., Nakamura Y., Konioka M. Nuclear Magnetic Resonance studies of poly (3-hydroxybutyrate) and phosphate metabolism in A. eutrophus. Appl Env Microbiol. 1989;55:2932. doi: 10.1128/aem.55.11.2932-2938.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Yellore V., Desai A. Production of native poly-â-hydroxybutyrate from lactose and whey by Methylobacterium sp. ZP24. Lett Appl Microbiol. 1998;26:391–394. doi: 10.1046/j.1472-765X.1998.00362.x. [DOI] [PubMed] [Google Scholar]
  • 14.Hann S.K., Chang Y.K., Kim B.S., Lee K.M., Chang H.N. The recovery of poly (3-hydroxybutyrate) by using dispersion of sodium chloride solution and chloroform. Biotechnol Bioeng. 1993;7:209–212. [Google Scholar]
  • 15.Hann S.K., Chang Y.K., Kim B.S., Lee K.M., Chang H.N. Optimization of microbial (3-hydroxybutyrate) recovery using dispersion of sodium hypochlorite solution and chloroform. Biotechnol Bioeng. 1994;44:256–259. doi: 10.1002/bit.260440215. [DOI] [PubMed] [Google Scholar]
  • 16.Rawte T., Mavinkurve S. A rapid hypochlorite method for the extraction of polyhydroxy alkonates from bacterial cells. Indian J Exptl Biol. 2002;40:924–929. [PubMed] [Google Scholar]
  • 17.Kim B.S., Lee S.C., Lee S.Y., Chang H.N., Chang Y.K., Woo S.I. Production of poly (3-hydroxy butyric acid co-3-hyroxyvaleric acid) by fed batch culture of Alcaligenes eutrophus with substrate feeding using online glucose analyzer. Biotechnol Bioeng. 1994;43:892–898. doi: 10.1002/bit.260430908. [DOI] [PubMed] [Google Scholar]
  • 18.Rapske R., Rapske A.C. Quantitative requirements for exponential growth of Alcaligenes eutrophus. Appl Env. 1976;Microbiol32:585–591. doi: 10.1128/aem.32.4.585-591.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Law J.H., Slepecky R.A. Assay of poly-â-hydroxbutyric acid. J Bacteriol. 1961;82:33–36. doi: 10.1128/jb.82.1.33-36.1961. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Smibert R.N., Krieg N.R. General characterization. In: Gerhardt R.G., Murray E., Costilow R.N., Nester E.W., Wood W.A., Krieg N.R., Phillips G.B., editors. Manual of methods of general bacteriology. Washington: American Society for Microbiology; 1981. pp. 409–443. [Google Scholar]
  • 21.Sayyed R.Z., Chincholkar S.B. Production of Poly - â-hydroxy butyrate (PHB) from Alcaligenes faecalis. Indian J Microbiol. 2004;444:269–272. [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES