Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2009 Aug 22;49(3):212–218. doi: 10.1007/s12088-009-0047-4

Construction and purification of His-tagged staphylococcal ArsB protein, an integral membrane protein that is involved in arsenical salt resistance

Carmela Mascio 1, Donald J White 1, Louis S Tisa 1,
PMCID: PMC3450018  PMID: 23100771

Abstract

Bacterial resistance to arsenical salts encoded on plasmid pI258 occurs by active extrusion of toxic oxyanions from cells of Staphylococcus aureus. The operon encodes for three gene products: ArsR, ArsB and ArsC. The gene product of arsB is an integral membrane protein and it is sufficient to provide resistance to arsenite and antimonite. A poly His-ArsB fusion protein was generated to purify the staphylococcal ArsB protein. Cells containing the His-tagged arsB gene were resistant to arsenite and antimonite. The levels of resistance to these toxic oxyanions by the His-tagged construct were greater than the levels obtained with the wild type gene. These data would indicate that the His-tagged protein is functionally active. A new 36 kDa protein band was visualized on 10% SDS-polyacrylamide gel electrophoresis (PAGE), which was confirmed as the His-ArsB protein by immunodetection with polyclonal Hisantibodies. The His-ArsB fusion protein was purified by the use of metal-chelate affinity chromatography with a Ni+2-nitrilotriacetic acid column and size-exclusion chromatography suggests that the protein was a homodimer.

Keywords: Arsenite, Membrane protein, Transport, Affinity chromatography, Arsenic resistance

Full Text

The Full Text of this article is available as a PDF (952.1 KB).

References

  • 1.Mukhopadhyay R., Rosen B.P., Phung Le T., Silver S. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Lett. 2002;26:311–326. doi: 10.1111/j.1574-6976.2002.tb00617.x. [DOI] [PubMed] [Google Scholar]
  • 2.Silver S. Bacterial resistances to toxic metal ions — a review. Gene. 1996;179:9–19. doi: 10.1016/S0378-1119(96)00323-X. [DOI] [PubMed] [Google Scholar]
  • 3.Rosen B.P. Biochemistry of arsenic detoxification. FEBS Lett. 2002;529:86–92. doi: 10.1016/S0014-5793(02)03186-1. [DOI] [PubMed] [Google Scholar]
  • 4.Diorio C., Cai J., Marmor J., Shinder R., DuBow M.S. An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J Bacteriol. 1995;177:2050–2056. doi: 10.1128/jb.177.8.2050-2056.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Novik R.P., Roth C. Plasmid-linked resistance to inorganic salts in Staphylococcal aureus. J Bacteriol. 1968;95:1335–1342. doi: 10.1128/jb.95.4.1335-1342.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Silver S., Budd K., Leahy K.M., Shaw W.V., Hammond D., Novick R.P., Willsky G.R., Malamy M.H., Rosenberg H. Inducible plasmid-determined resistance to arsenate, arsenite and antimony (III) in Escherichia coli and Staphylococcus aureus. J Bacteriol. 1981;146:983–996. doi: 10.1128/jb.146.3.983-996.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Götz F., Zabielski J., Phillipson L., Lindberg M. DNA homology between the arsenate resistance plasmid pSX267 from Staphylococcus xylosus and the penicillase plasmid pI258 from Staphylococcus aureus. Plasmid. 1983;9:126–137. doi: 10.1016/0147-619X(83)90015-X. [DOI] [PubMed] [Google Scholar]
  • 8.Chen C.-M., Misra T.K., Silver S., Rosen B.P. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J Biol Chem. 1986;261:15030–15038. [PubMed] [Google Scholar]
  • 9.Bruhn D.F., Li J., Silver S., Roberto F., Rosen B.P. The arsenical resistance operon of IncN plasmid R46. FEMS Microbiol Lett. 1996;129:149–153. doi: 10.1016/0378-1097(96)00134-6. [DOI] [PubMed] [Google Scholar]
  • 10.Chen C.-M., Mobley H.L.T., Rosen B.P. Separate resistances to arsenate and arsenite (antimonite) encoded by the arsenical resistance operon of R factor R773. J Bacteriol. 1986;161:758–763. doi: 10.1128/jb.161.2.758-763.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Mobley H.L.T., Rosen B.P. Energetics of plasmidmediated arsenate resistance in Escherichia coli. Proc Natl Acad Sci USA. 1982;79:6119–6122. doi: 10.1073/pnas.79.20.6119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.San Francisco M.J.D., Hope C.L., Owolabi J.B., Tisa L.S., Rosen B.P. Identification of the metalloregulatory element of element of the plasmid-encoded arsenical resistance operon. Nucleic Acids Res. 1990;18:619–624. doi: 10.1093/nar/18.3.619. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Wu J., Rosen B.P. The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Mol Microbiol. 1993;8:615–623. doi: 10.1111/j.1365-2958.1993.tb01605.x. [DOI] [PubMed] [Google Scholar]
  • 14.Kaur P., Rosen B.P. Plasmid-encoded resistance to arsenic and antimony. Plasmid. 1992;27:29–40. doi: 10.1016/0147-619X(92)90004-T. [DOI] [PubMed] [Google Scholar]
  • 15.Meng Y.-L., Liu Z., Rosen B.P. As(III) and Sb(III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem. 2004;279:18334–18341. doi: 10.1074/jbc.M400037200. [DOI] [PubMed] [Google Scholar]
  • 16.Kuroda M., Dey S., Sanders O., Rosen B. Alternate energy coupling of ArsB, the membrane subunit of the Ars Anion-translocating ATPase. J Biol Chem. 1997;272:326–331. doi: 10.1074/jbc.272.34.21240. [DOI] [PubMed] [Google Scholar]
  • 17.Ji G., Silver S. Regulation and expression of the arsenic resistance operon from Staphylococcus aureus plasmid pI258. J Bacteriol. 1992;174:3684–3694. doi: 10.1128/jb.174.11.3684-3694.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Rosenstein R., Peschel A., Wieland B., Götz F. Expression and regulation of the antimonite, arsenite, and arsenate resistance operon of Staphylococcal xylosus plasmid pSX267. J Bacteriol. 1992;174:3676–3683. doi: 10.1128/jb.174.11.3676-3683.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Ji G., Garber E.A., Armes L.G., Chen C.-M., Fuchs J.A., Silver S. Arsenate reductase of Staphylococcus aureus plasmid pI258. Biochem. 1994;33:7294–7299. doi: 10.1021/bi00189a034. [DOI] [PubMed] [Google Scholar]
  • 20.Ji G., Silver S. Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci. 1992;89:9474–9478. doi: 10.1073/pnas.89.20.9474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Rosen B.P., Weigel U., Karkaria C., Gangola P. Molecular characterization of an anion pump. The arsA gene product ia an arsenite (antimonate)-stimulated ATPase. J Biol Chem. 1988;263:3067–3070. [PubMed] [Google Scholar]
  • 22.Rosen B.P., Weigel U., Monticello R.A., Edwards B.F.P. Molecular analysis of an anion pump: purification of the ArsC protein. Arch Biochem Biophys. 1991;284:381–385. doi: 10.1016/0003-9861(91)90312-7. [DOI] [PubMed] [Google Scholar]
  • 23.Rosenstein R, Nikoliet K and Götz F (1994) Binding of ArsR, the repressor of the (pSX267) arsenic resistance operon to a sequence with dyad symmetry within the ars promoter. Mol Gen Genet 242566–242572 [DOI] [PubMed]
  • 24.San Francisco M.D.J., Tisa L.S., Rosen B.P. Identification of the membrane component of the anion pump encoded by the arsenical resistance operon of R-factor R773. Mol Microbiol. 1989;3:15–21. doi: 10.1111/j.1365-2958.1989.tb00098.x. [DOI] [PubMed] [Google Scholar]
  • 25.Dou D., Dey S., Rosen B.P. A functional chimeric membrane subunit of an ion-translocating AtPase. Anton van Leeuv. 1994;65:359–368. doi: 10.1007/BF00872219. [DOI] [PubMed] [Google Scholar]
  • 26.Wu J., Tisa L.S., Rosen B.P. Membrane topology of the ArsB protein, the membrane subunit of an anion-translocating ATPase. J Biol Chem. 1992;267:12570–12576. [PubMed] [Google Scholar]
  • 27.Sambrook J., Fritsch E.F., Maniatis T., editors. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory; 1989. [Google Scholar]
  • 28.Qiagen Ni-NTA Spin Handbook, Qiagen Co. pp. 16–17
  • 29.Miroux B., Walker J. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol. 1996;260:289–298. doi: 10.1006/jmbi.1996.0399. [DOI] [PubMed] [Google Scholar]
  • 30.Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1961;193:265–275. [PubMed] [Google Scholar]
  • 31.Laemmli U.K. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  • 32.Tisa L.S., Rosen B.P. Molecular characterization of an anion pump: The ArsB protein is the membrane anchor for the ArsA protein. J Biol Chem. 1990;265:190–194. [PubMed] [Google Scholar]
  • 33.Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets; procedure and some applications. Proc Natl Acad Sci USA. 1979;76:4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Hochuli E. Purification of recombinant proteins with metal chelate absorbent. In: Setlow J.K., editor. Genetic engineering principles and methods. NY: Plenum Press; 1990. pp. 87–98. [DOI] [PubMed] [Google Scholar]
  • 35.Wang H.-W., Lu Y.-J., Li L.-J., Wang D.-N., Sui S.-F. Trimeric ring-like structure of ArsA ATPase. FEBS Lett. 2000;469:105–110. doi: 10.1016/S0014-5793(00)01257-6. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES