Abstract
A marked reduction in uptake of α-santonin, accompanied by loss of ability of cells to transform the substrate, is observed on shocking Sphingomonas paucimobilis strain S ATCC 43388 cells by freeze — thaw method. The shock fluid shows a 26% quench in fluorescence at 350nm on incubation with the substrate. Addition of shock fluid to the freeze thawed cells restores both uptake as well as transformation of α-santonin to near normal.
Keywords: Periplasmic proteins, Shock fluid, Fluorescence, Sphingomonas
Full Text
The Full Text of this article is available as a PDF (188.5 KB).
References
- 1.Martin M.L., Moran A., Carron R., Montero M.L., San Roman L. Antipyretic activity of alpha and beta-santonin. J Ethnopharmacol. 1988;23:285–290. doi: 10.1016/0378-8741(88)90007-4. [DOI] [PubMed] [Google Scholar]
- 2.Singh B., Srivastava J.S., Khosa R.L., Singh U.P. Individual and combined effects of berberine and Santonin on spore germination of some fungi. Folia Microbiol (Prague) 2001;46:137–142. doi: 10.1007/BF02873592. [DOI] [PubMed] [Google Scholar]
- 3.Seung H. K., Ju H. S., Bo G. C., Hyeoung-Joon K., Tae S. K. Chemical modification of α-santonin into a Diacetoxy acetal form confers the ability to induce differentiation of human promyelocytic leukemia cells via down-regulation of NF-κB DNA binding activity. J Biol Chem. 2006;281:19. doi: 10.1074/jbc.M510944200. [DOI] [PubMed] [Google Scholar]
- 4.Hikino H., Tokuoko T., Takemoto T. Biochemical synthesis VIII. Microbial transformation of α-santonin to 1,2 dihydrosantonin. Chem. Pharm. Bull. (Tokyo) 1970;18:2127–2128. [Google Scholar]
- 5.Iida M., Totoki S., Iizuka H., Yamakawa K. Microbial formation of lumisantonin from α-santonin. J Fermen Technol. 1981;59:483–484. [Google Scholar]
- 6.Sato Y., Oda T., Inoye J., Kunugi M., Suzuke K.T. Steriochemistry of microbial hydrogenation of (−) Santonin to (+) 1,2 dihydrosantonin by Streptomyces inereocrocratus NRRL 3443. Chem Pharm Bull Tokyo. 1984;32:504–509. [Google Scholar]
- 7.Sangodkar U.M.X., Mavinkurve S. Isolation and characterization of alpha-santonin assimilating Pseudomonas. J Bioscience. 1982;4:79–84. doi: 10.1007/BF02702583. [DOI] [Google Scholar]
- 8.Furtado I., Sangodkar U. M. X., Mavinkurve S. The Pseudomonas strain S (ATCC 43388) utilizing α-santonin is S. paucimobilis. Ind J Microbiol. 1994;34:219–222. [Google Scholar]
- 9.Naik U.P., Mavinkurve S. α-santonin 1,2-reductase and its role in the formation of dihydrosantonin and lumisantonin by Pseudomonas cichorii S. Canadian J Microbiol. 1987;33:658–662. doi: 10.1139/m87-115. [DOI] [PubMed] [Google Scholar]
- 10.Furtado I., Mavinkurve S., Paknikar S.K. Microbial transformation of alpha-santonin to 11-dimethyl-eudesm-4-ene-3, 6-dione. Lett Appl Microbiol. 1988;6:27–30. [Google Scholar]
- 11.Naik U.P., Mavinkurve S., Naik U.S., Paknikar S.K. Transformation of α-santonin by Pseudomonas cichorii S. Identification of products. Ind J Chem. 1988;278:381–382. [Google Scholar]
- 12.Colaco D., Furtado I., Naik U.P., Mavinkurve S., Paknikar S.K. Transformation of α-santonin via two independent pathways by Pseudomonas strain S ATCC 43388. Lett Appl Microbiol. 1993;17:212–214. [Google Scholar]
- 13.Furtado I., Sangodkar U.M.X., Mavinkurve S. Mechanism of uptake of alpha-santonin by Pseudomonas cichorii strain S. Biotechnol Bioeng. 1987;30:991–994. doi: 10.1002/bit.260300812. [DOI] [PubMed] [Google Scholar]
- 14.Ankaru Y., Kobayashi H., Amanuma A., Yamaguchi A. Transport of sugars and Amino acids in bacteria VII. Characterization of the reaction of restoration of active transport mediated by binding protein. J Biochem. 1973;74:1249–1261. doi: 10.1093/oxfordjournals.jbchem.a130353. [DOI] [PubMed] [Google Scholar]
- 15.Arthur B.P., Louise S.P., Metlie B.W., Jacques D. A Binding site for sulphate and its relation to sulphate transport into Salmonella typhimurium. J Biol Chem. 1966;241:3962–3969. [PubMed] [Google Scholar]
- 16.Raj M.S., Furtado I., Mavinkurve S. Release of periplasmic proteins from S. paucimobilis strain S ATCC 43388. Indian J Exp Biol. 1996;34:86–88. [Google Scholar]
- 17.Paoletti L.A., Short K.A., Blackmore M., Blackmore P. Freeze thawing of Aquasprillum magnetotacticum cells selectively releases periplasmic protein. Appl environ Microbiol. 1987;53:2590–2592. doi: 10.1128/aem.53.10.2590-2592.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Lowry H., Rosenbrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin Phenol reagent. J Biol Chem. 1951;245:265–275. [PubMed] [Google Scholar]
- 19.Zukin R.S., Hartig P.R., Loshland D.E.J. Binding of galactose to the 5 AF labelled galactose receptor results in 10 lambda. Quenching of the fluorescence intensity and a 4nm blue shift in the emission spectrum. Biochem. 1979;18:5599–5605. doi: 10.1021/bi00592a012. [DOI] [PubMed] [Google Scholar]
- 20.Lamelli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature London. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- 21.Ames G.F.L., Carol S.M., Venkatakrishna S. Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherchia coli to human: Traffic ATPases. FEMS Microbiol Rev. 1990;75:429–446. doi: 10.1016/S0168-6445(05)80008-7. [DOI] [PubMed] [Google Scholar]
- 22.Watanabe M., Watanabe H. Periplasmic steroid binding proteins and steroid transporting enzymes of Pseudomonas. J Steroid Biochem. 1974;5:439–466. doi: 10.1016/0022-4731(74)90041-7. [DOI] [PubMed] [Google Scholar]
- 23.Gerdes R.G., Strickland K.P., Rosenberg H. Restoration of phosphate transport by the phosphate binding protein in spheroplasts of E. coli. J Bacteriol. 1977;131:512–518. doi: 10.1128/jb.131.2.512-518.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Galloway D.R., Furlong C.E. Reconstitution of binding protein — dependent ribose transport in spheroplasts of E. Coli: k-12. Arch of Biochem Biophy. 1979;197:158–162. doi: 10.1016/0003-9861(79)90231-5. [DOI] [PubMed] [Google Scholar]
- 25.Masters P.S., Hong J.S. Reconstitution of binding protein dependent active transport of glutamic acid in spheroplasts of Escherichia Coli. Biochem. 1981;20:4900–4904. doi: 10.1021/bi00520a015. [DOI] [PubMed] [Google Scholar]
- 26.Kundig W., Kundig F.D., Anderson B., Rosemar S. Restoration of active transport of glycosides in E. coli by a component of a phosphotransferase system. J Biol Chem. 1966;241:3243–3245. [PubMed] [Google Scholar]
- 27.Johann M.B., Christopher F.H., Michael F., Paul A.R., John B., Peter B.G. Lateral diffusion of proteins in the periplasm of E. coli. J. Bacteriol. 1986;165:787–794. doi: 10.1128/jb.165.3.787-795.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Saier M. H., Jr. Families of trasmembrane transporters selective for amino acids and their derivatives. Microbiol. 2000;146:1775–1795. doi: 10.1099/00221287-146-8-1775. [DOI] [PubMed] [Google Scholar]
- 29.Fasses T.A., Lynne M., Collen P. Localisation of Methanol dehydrogenase strain of Methylotropic bacteria detected by immunogold labeling. Appl Environ Microbiol. 1992;58:2302–2304. doi: 10.1128/aem.58.7.2302-2307.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Fath M.J., Kolter R. ABC transporters: bacterial exporters. Microbiol rev. 1993;57:995–1017. doi: 10.1128/mr.57.4.995-1017.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
