Abstract
A study was taken up to evaluate the role of some fermentation parameters like inoculum concentration, temperature, incubation period and agitation time on ethanol production from kinnow waste and banana peels by simultaneous saccharification and fermentation using cellulase and co-culture of Saccharomyces cerevisiae G and Pachysolen tannophilus MTCC 1077. Steam pretreated kinnow waste and banana peels were used as substrate for ethanol production in the ratio 4:6 (kinnow waste: banana peels). Temperature of 30°C, inoculum size of S. cerevisiae G 6% and (v/v) Pachysolen tannophilus MTCC 1077 4% (v/v), incubation period of 48 h and agitation for the first 24 h were found to be best for ethanol production using the combination of two wastes. The pretreated steam exploded biomass after enzymatic saccharification containing 63 gL−1 reducing sugars was fermented with both hexose and pentose fermenting yeast strains under optimized conditions resulting in ethanol production, yield and fermentation efficiency of 26.84 gL−1, 0.426 gg −1 and 83.52 % respectively. This study could establish the effective utilization of kinnow waste and banana peels for bioethanol production using optimized fermentation parameters.
Keywords: Kinnow waste, Banana peels, SSF, Ethanol, Fermentation parameters, Cellulase production
Full Text
The Full Text of this article is available as a PDF (112.7 KB).
References
- 1.Jeffries T.W., Jin Y.S. Ethanol and thermotolerance in the bioconversion of xylose by yeasts. Adv Appl Microbiol. 2000;47:221–268. doi: 10.1016/s0065-2164(00)47006-1. [DOI] [PubMed] [Google Scholar]
- 2.Zaldivar J., Nielsen J., Olsson L. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration. Appl Microbiol Biotechnol. 2001;56:17–34. doi: 10.1007/s002530100624. [DOI] [PubMed] [Google Scholar]
- 3.John T (2004) Biofuels for transport. http.//www.task39.org
- 4.Wang M., Saricks C., Santini D. Effects of fuel ethanol use on fuel-cycle energy and greenhouse gas emissions. Argonne, Illinois: Argonne National Laboratory; 1999. [Google Scholar]
- 5.McAloon A., Taylor F., Yee W., Ibsen K., Wooley R. Determining, the cost of producing ethanol from corn starch and lignocellulosic feedstocks. Wyndmoor, PA: Eastern Regional Research Centre; 2000. [Google Scholar]
- 6.Grohman K., Cameron R.G., Buslig B.S. Fermentation of sugars in orange peel hydrolysates to ethanol by recombinant E. coli K 011. Appl Biochem Biotechnol. 1995;51–52:423–435. doi: 10.1007/BF02933445. [DOI] [PubMed] [Google Scholar]
- 7.Grohmann K., Manthey J.A., Cameron R.G., Buslig B.S. Fermentation of galacturonic acid and pectin-rich materials to ethanol by genetically modified strains of Erwinia. Biotechnol Lett. 1998;20(2):195–200. doi: 10.1023/A:1005349112770. [DOI] [Google Scholar]
- 8.Hammond J.B., Egg R., Diggins D., Cioble C.G. Alcohol from bananas Bioresour Technol. 1996;56:125–130. [Google Scholar]
- 9.FAO (2005) Statistical data for crop production. www.fao.org
- 10.Khandelwal P., Vijay K., Das N., Tyagi S.M. Development of process for preparation of pure and blended kinnow wine without debittering kinnow mandarin juice. Int J Fd Safety. 2006;6:24–29. [Google Scholar]
- 11.Kalra K.L., Grewal H.S., Kahlon S.S. Bioconversion of kinnow mandarin waste into single cell protein. MIRCEN J. 1989;5:32–39. [Google Scholar]
- 12.Kobayashi F., Sawada T., Nakamura Y., Ohnaga M., Godliving M., Ushiyama T. Saccharification and alcohol fermentation in starch solution of steam exploded potato. Appl Biochem Biotechnol. 1998;69:177–189. doi: 10.1007/BF02788812. [DOI] [PubMed] [Google Scholar]
- 13.Sharma S.K., Kalra K.L., Grewal H.S. Fermentation of enzymatically saccharified sunflower stalks for ethanol production and its scale up. Bioresour Technol. 2002;85:31–33. doi: 10.1016/S0960-8524(02)00076-7. [DOI] [PubMed] [Google Scholar]
- 14.Chahal D.S., Gray W.D. Growth of selected cellulolytic fungi on wood pulp. In: Walter A. H., Elphick J. S., editors. Biodegradation of materials microbial and allied aspects. England: Elsevier Publ. Co. Barking; 1968. pp. 584–593. [Google Scholar]
- 15.Mandels M., Andreotti R., Roche C. Measurement of saccharifying cellulase. Biotechnol Bioengg Symp. 1976;6:21–23. [PubMed] [Google Scholar]
- 16.Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple, Ladisch M. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour Technol. 2005;96:673–686. doi: 10.1016/j.biortech.2004.06.025. [DOI] [PubMed] [Google Scholar]
- 17.Crampton E.W., Maynard I.A. The relation of cellulose and lignin content to the nutrition value of animal feeds. J Nutr. 1938;15:383–386. [Google Scholar]
- 18.Goering HK & Vansoest (1970) Forage Fibre Analysis. Agricultural Research Services, United States Department of Agriculture, Agricultural Handbook No. 379
- 19.Dubois M., Gilles K.A., Hamilton J.K., Roberts P.A., Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28:350–356. doi: 10.1021/ac60111a017. [DOI] [Google Scholar]
- 20.Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal Chem. 1959;31:426–428. doi: 10.1021/ac60147a030. [DOI] [Google Scholar]
- 21.Oberoi H.S., Kalra K.L., Uppal D.S., Tyagi S.K. Effect of different drying methods of cauliflower waste on drying time, colour retention and glucoamylase production by Aspergillus niger NCIM 1054. Int J Food Sci Technol. 2007;42:228–234. doi: 10.1111/j.1365-2621.2006.01331.x. [DOI] [Google Scholar]
- 22.Kargi F., Curme J.A., Sheehan J.J. Solid state fermentation of sweet sorghum to ethanol. Biotechnol Bioengg. 1985;27:34–40. doi: 10.1002/bit.260270106. [DOI] [PubMed] [Google Scholar]
- 23.El-Refai A.H., El-Abyad M.S., El-Diwany A.I., Sallam L.A., Allam R.F. Some physiological parameters for ethanol production from beet molasses by Saccharomyces cerevisiae Y-7. Bioresour Technol. 1992;42:183–189. doi: 10.1016/0960-8524(92)90021-O. [DOI] [Google Scholar]
- 24.Verma G., Nigam P., Singh D., Chaudhary K. Bioconversion of starch to ethanol in a single step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21. Bioresour Technol. 2000;72:261–266. doi: 10.1016/S0960-8524(99)00117-0. [DOI] [Google Scholar]
- 25.Sanchez S., Bravo V., Moya A.J., Castro E., Camacho F. Influence of temperature on the fermentation of D-xylose by Pachysolen tannophilus to produce ethanol and xylitol. Proc Biochem. 2004;39(6):673–679. doi: 10.1016/S0032-9592(03)00139-0. [DOI] [Google Scholar]
- 26.El-Abyad M.S., El-Refai A.H., El-Diwany A.I., Sallam L.A., Allam R.F. Effect of some fermentation parameters on ethanol production from beet molasses by Saccharomyces cerevisiae Y-7. Bioresour Technol. 1992;42(3):191–195. doi: 10.1016/0960-8524(92)90140-S. [DOI] [Google Scholar]
- 27.Wright J.D. Ethanol from biomass by enzymatic hydrolysis. Chem Eng Prog. 1988;84:62–74. [Google Scholar]
- 28.Sharma S.K. Saccharification and bioethanol production from sunflower stalks and hulls. Ludhiana, India: Punjab Agricultural University; 2000. [Google Scholar]
- 29.Suresh K., Kiransree N., Rao V.L. Utilization of damaged sorghum and rice grains for ethanol production by simultaneous saccharification and fermentation. Bioresour Technol. 1999;68:301–304. doi: 10.1016/S0960-8524(98)00135-7. [DOI] [Google Scholar]
- 30.Ratnam B.V.V., Rao M.N., Rao M.D., Rao S.S., Ayyanna C. Optimization of fermentation conditions for the production of ethanol from sago starch using response surface methodology. World J Microbiol Biotechnol. 2003;19(5):523–526. doi: 10.1023/A:1025174731814. [DOI] [Google Scholar]
- 31.Alfenore S., Cameleyre X., Benbadis L., Bideaux C., Uribelarrea J.L., Goma G., Molina-Jourve C., Guillouet S.E. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl Microbiol Biotechnol. 2004;63(5):537–542. doi: 10.1007/s00253-003-1393-5. [DOI] [PubMed] [Google Scholar]
- 32.Kosaric N, Wieczorek A, Cosentino GP, Magee RJ & Prenosil JE (1983) Ethanol fermentation, pp. 237–238. In: H Dellweg (ed.), Biotechnology, Vol. 3, Verlag Chemie