Abstract
An investigation on the properties of an alkaline protease secreted by Bacillus circulans BM15 strain isolated from a mangrove sediment sample was carried out in order to characterize the enzyme and to test its potency as a detergent additive. The protease was purified to apparent homogeneity by ammonium sulphate precipitation and was a 30-kDa protease as shown by SDS-PAGE and its proteolytic activity was detected by casein zymography. It had optimum activity at pH 7, was stable at alkaline pH range (7 to 11), had optimum temperature of activity 40°C and was stable up to a temperature of 55°C after incubation for one hour. Hg2+, Zn2+, Co2+, and Cu2+completely inhibited the enzyme activity, while Ca2+, Mg2+, K+ and Fe3+ were enhancing the same. The serine protease inhibitor PMSF and metal chelator EDTA inhibited the activity of this protease while the classic metalloprotease inhibitor 1, 10 phenanthroline did not show inhibition. The enzyme was stable in SDS, Triton-X-100 and H2 O2 as well as in various commercial detergents after incubation for one hour. The extracellular production of the enzyme, the pH and temperature stability and stability in presence of oxidants, surfactants and commercial detergents suggest its possible use as a detergent additive.
Keywords: Alkaline protease, Bacillus circulans, Detergent, Alkali stability, Thermal stability
Full Text
The Full Text of this article is available as a PDF (196.4 KB).
References
- 1.Rao M.B., Tanksale A.M., Ghatge M.S., Deshpande V.V. Molecular and biotechnological aspects of microbial proteases. Microbiol Molecular Biol Rev. 1998;162:597–635. doi: 10.1128/mmbr.62.3.597-635.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Gupta R., Beg Q.K., Lorenz P. Bacterial alkaline proteases: molecular approaches and industrial applications. Appl Microbiol Biotechnol. 2002;59:15–32. doi: 10.1007/s00253-002-0975-y. [DOI] [PubMed] [Google Scholar]
- 3.Prakasham R.S., Rao C.S., Rao R.S., Sarma P.N. Alkaline Protease Production by an Isolated Bacillus circulans under Solid-State Fermentation Using Agroindustrial Waste: Process Parameters Optimization. Biotechnol. Prog. 2005;21:1380–1388. doi: 10.1021/bp050095e. [DOI] [PubMed] [Google Scholar]
- 4.Harrigan W.F., McCance M.E. Laboratory Methods of Microbiology. London, New York: Academic Press; 1972. p. 362. [Google Scholar]
- 5.Kunitz M. Crystalline soyabean trypsin inhibitor. J Gen Physiol. 1947;30:291–301. doi: 10.1085/jgp.30.4.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Lowry O.H., Rosebrough N., Farr A.L., Rondall R.L. Protein measurement with the folin phenol reagent. J Biol Chem. 1951;193:265–273. [PubMed] [Google Scholar]
- 7.Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- 8.Schmidt T.M., Bleakley B., Nealson K.H. Characterization of an extracellular protease from the insect pathogen Xenorhabdus luminescens. Appl Environ Microbio. 1988;54:2793–2797. doi: 10.1128/aem.54.11.2793-2797.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Salamanca M.H., Barria C., Asenjo J.A., Andrews B.A. Isolation, purification and preliminary characterization of cryophilic proteases of marine origin. Bioseperation. 2002;10:237–241. doi: 10.1023/A:1016383212244. [DOI] [PubMed] [Google Scholar]
- 10.Yang A.K., Shih I.L., Tzeng Y.M., Wang S.L. Production and purification of protease from a Bacillus subtilus that can deproteinise crustacean waste. Enzyme Microb Technol. 2000;26:406–413. doi: 10.1016/S0141-0229(99)00164-7. [DOI] [PubMed] [Google Scholar]
- 11.Prakash M., Mohan R.M., Koch-Brandt, Claudia Purification and Characterization of Bacillus cereus Protease Suitable for Detergent Industry. Appl Biochem Biotechnol. 2005;127:143–156. doi: 10.1385/ABAB:127:3:143. [DOI] [PubMed] [Google Scholar]
- 12.Cowan D.A., Daniel R.M. Rapid purification of two thermophilic proteinases using dye-ligand chromatography. J Biophys Methods. 1996;31:31–37. doi: 10.1016/0165-022X(95)00028-P. [DOI] [PubMed] [Google Scholar]
- 13.Kumar C.G., Takagi H. Microbial alkaline proteases: From a bio-industrial viewpoint. Biotechnol Ad. 1999;17:561–594. doi: 10.1016/S0734-9750(99)00027-0. [DOI] [PubMed] [Google Scholar]
- 14.Ghorbel B., Kamoun A.S., Nasri M. Stability studies of protease from Bacillus cereus BGI. Enzyme Micro Technol. 2003;32:513–518. doi: 10.1016/S0141-0229(03)00004-8. [DOI] [Google Scholar]
- 15.Ordas M.C., Novoa B., Faisal M., McLaughlin S., Figueras A. Proteolytic activity of cultured Pseudoperkinsus tapetis extracellular products. Comparative Biochem Physiol. 2001;130:199–206. doi: 10.1016/S1096-4959(01)00423-7. [DOI] [PubMed] [Google Scholar]
- 16.Kwon Y.T., Kim J.O., Moon S.Y., Lee H.H., Rho H.M. Extracellular alkaline protease from alkalophilic Vibrio metschnikovii strain RH 530. Biotechnol Lett. 1994;16:413–418. [Google Scholar]
- 17.Manachani P.L., Fortina M.G., Parini C. Thermo stable alkaline protease produced by Bacillus thermoruber-a new species of Bacillus. Appl Microbiol Biotechnol. 1988;28:409–413. doi: 10.1007/BF00268205. [DOI] [Google Scholar]
- 18.Greene R.V., Griffin H.L., Cotta M.A. Utility of alkaline protease from marine shipworm bacterium in industrial cleansing applications. Biotechnol Lett. 1996;18:759–764. doi: 10.1007/BF00127884. [DOI] [Google Scholar]
- 19.Joo H.-S., Kumar C.G., Park G.-C., Paik S.R., Chang C.S. Oxidant and SDS-stable alkaline protease from Bacillus clausii I-52: production and some properties. J Appl Microbiol. 2003;95:267–272. doi: 10.1046/j.1365-2672.2003.01982.x. [DOI] [PubMed] [Google Scholar]
- 20.Saeki K., Iwata J., Watanabe Y., Tamai Y. Purification and characterization of an alkaline protease from Oerskovia xanthineolytica TK.1. J Ferment Bioeng. 1994;5:554–556. doi: 10.1016/0922-338X(94)90128-7. [DOI] [Google Scholar]
- 21.Yum D.Y., Chung H.C., Bai D.H., Oh D.H., Yu J.H. Purification and characterization of alkaline serine protease from an alkalophilic Streptomyces sp. Biosci Biotechnol Biochem. 1994;58:472–474. doi: 10.1271/bbb.58.470. [DOI] [PubMed] [Google Scholar]
- 22.Anwar A., Saleeimuddin Alkaline protease from Spilosoma obliqua: potential applications in bioformulations. Biotechnol Appl Biochem. 2000;31:85–89. doi: 10.1042/BA19990078. [DOI] [PubMed] [Google Scholar]
- 23.Ingale S.S., Rele M.V., Srinivasan M.C. Alkaline protease production by Basidiobolus (N.C.L. 97.1.1): effect of “darmform” morphogenesis and cultural conditions on enzyme production and preliminary enzyme characterization. World J Microbiol Biotechnol. 2002;8:403–408. doi: 10.1023/A:1015596108518. [DOI] [Google Scholar]
- 24.Moriera K.A., Albuquerque B.F., Teixeira M.F.S., Porto A.L.F., Fihlo L. Application of protease from Nocardiopsis spp. as laundry detergent additive. World J Microbiol Biotechnol. 2002;18:307–312. [Google Scholar]
- 25.Banik R.M., Prakash M. Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiol Research. 2004;159:135–140. doi: 10.1016/j.micres.2004.01.002. [DOI] [PubMed] [Google Scholar]