Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2009 Apr 21;49(1):2–10. doi: 10.1007/s12088-009-0008-y

Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview

Sadhana Lal 1, Silvia Tabacchioni 1,
PMCID: PMC3450047  PMID: 23100748

Abstract

Microbial diversity is a major resource for biotechnological products and processes. Bacteria are the most dominant group of this diversity which produce a wide range of products of industrial significance. Paenibacillus polymyxa (formerly Bacillus polymyxa), a non pathogenic and endospore-forming Bacillus, is one of the most industrially significant facultative anaerobic bacterium. It occurs naturally in soil, rhizosphere and roots of crop plants and in marine sediments. During the last two decades, there has been a growing interest for their ecological and biotechnological importance, despite their limited genomic information. P. polymyxa has a wide range of properties, including nitrogen fixation, plant growth promotion, soil phosphorus solubilisation and production of exopolysaccharides, hydrolytic enzymes, antibiotics, cytokinin. It also helps in bioflocculation and in the enhancement of soil porosity. In addition, it is known to produce optically active 2,3-butanediol (BDL), a potentially valuable chemical compound from a variety of carbohydrates. The present review article aims to provide an overview of the various roles that these microorganisms play in the environment and their biotechnological potential.

Keywords: Paenibacillus polymyxa, Plant growth promotion, Biocontrol, Flocculation, Flotation

Full Text

The Full Text of this article is available as a PDF (588.9 KB).

References

  • 1.Satyanarayana T. Microbial diversity. Curr Sci. 2005;89:926–928. [Google Scholar]
  • 2.Ash C., Priest F.G., Collins M.D. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie Van Leeuwenhoek. 1993;64:253–260. doi: 10.1007/BF00873085. [DOI] [PubMed] [Google Scholar]
  • 3.Ash C., Farrow J.A.E., Wallbanks S., Collins M.D. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit — ribosomal RNA sequences. Lett Appl Microbiol. 1991;13:202–206. [Google Scholar]
  • 4.Guemouri-Athmani S., Berge O., Bourrain M., Mavingui P., Thiéry J.M., Bhatnagar T., Heulin T. Diversity of Paenibacillus polymyxa in the rhizosphere of wheat (Triticum durum) in Algerian soils. Eur J Soil Biol. 2000;36:149–159. doi: 10.1016/S1164-5563(00)01056-6. [DOI] [Google Scholar]
  • 5.Weid I.A., Paiva E., Nóbrega A., Elsas J.D., Seldin L. Diversity of Paenibacillus polymyxa strains isolated from the rhizosphere of maize planted in Cerrado soil. Res Microbiol. 2000;151:369–381. doi: 10.1016/S0923-2508(00)00160-1. [DOI] [PubMed] [Google Scholar]
  • 6.Holl F.B., Chanway C.P. Rhizosphere colonization and seedling growth promotion of lodgepole pine by Bacillus polymyxa. Can J Microbiol. 1992;38:303–308. doi: 10.1139/m92-050. [DOI] [Google Scholar]
  • 7.Shishido M., Massicotte H.B., Chanway C.P. Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann Bot. 1996;77:433–441. doi: 10.1006/anbo.1996.0053. [DOI] [Google Scholar]
  • 8.Ravi A.V., Musthafa K.S., Jegathammbal G., Kathiresan K., Pandian S.K. Screening and evaluation of probiotics as a biocontrol agent against pathogenic Vibrios in marine aquaculture. Lett Appl Microbiol. 2007;45:219–223. doi: 10.1111/j.1472-765X.2007.02180.x. [DOI] [PubMed] [Google Scholar]
  • 9.Heulin T., Berge O., Mavingui P., Gouzou L., Hebbar K.P., Balandreau J. Bacillus polymyxa and Rahnella aquatilis, the dominant N2-fixing bacteria associated with wheat rhizosphere in French soils. Eur J Soil Biol. 1994;30:35–42. [Google Scholar]
  • 10.Lindberg T., Granhall U., Tomenius K. Infectivity and acetylene reduction of diazotrophic rhizosphere bacteria in wheat (Triticum aestivum) seedlings under gnotobiotic conditions. Biol Fertil Soils. 1985;1:123–129. doi: 10.1007/BF00301779. [DOI] [Google Scholar]
  • 11.Singh H.P., Singh T.A. The interaction of rockphosphate, Bradyrhizobium, vesicular-arbuscular mycorrhizae and phosphate solubilizing microbes on soybean grown in a sub-Himalayan mollisol. Mycorrhiza. 1993;4:37–43. doi: 10.1007/BF00203249. [DOI] [Google Scholar]
  • 12.Rosado A.S., Seldin L. Production of a potentially novel anti-microbial substance by Bacillus polymyxa. World J Microbiol Biotechnol. 1993;9:521–528. doi: 10.1007/BF00386287. [DOI] [PubMed] [Google Scholar]
  • 13.Choi S.K., Park S.Y., Kim R., Lee C.H., Kim J.F., Park S.H. Identification and functional analysis of the fusaricidin biosynthetic gene of Paenibacillus polymyxa E681. Biochem Biophys Res Commun. 2007;365:89–95. doi: 10.1016/j.bbrc.2007.10.147. [DOI] [PubMed] [Google Scholar]
  • 14.Kajimura Y., Kaneda M. Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation, and biological activity. J Antibiot. 1996;49:129–135. doi: 10.7164/antibiotics.49.129. [DOI] [PubMed] [Google Scholar]
  • 15.Kajimura Y., Kaneda M. Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J Antibiot. 1997;50:220–228. [PubMed] [Google Scholar]
  • 16.Piuri M., Sanchez-Rivas C., Ruzal S.M. A novel antimicrobial activity of a Paenibacillus polymyxa strain isolated from regional fermented sausages. Lett Appl Microbiol. 1998;27:9–13. doi: 10.1046/j.1472-765X.1998.00374.x. [DOI] [PubMed] [Google Scholar]
  • 17.He Z., Kisla D., Zhang L., Yuan C., Green-Church K.B., Yousef A.E. Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl Environ Microbiol. 2007;73:168–178. doi: 10.1128/AEM.02023-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Haggag W.M. Colonization of exopolysaccharide-producing Paenibacillus polymyxa on peanut roots for enhancing resistance against crown rot disease. Afri J Biotechnol. 2007;6:1568–1577. [Google Scholar]
  • 19.Mavingui P., Heulin T. In vitro chitinase and antifungal activity of a soil, rhizosphere and rhizoplane population of Bacillus polymyxa. Soil Biol Biochem. 1994;26:801–803. doi: 10.1016/0038-0717(94)90277-1. [DOI] [Google Scholar]
  • 20.Nielsen P., Sorensen J. Multi-target and mediumindependent fungal antagonism by hydrolytic enzymes in Paenibacillus polymyxa and Bacillus pumilus strains from barley rhizosphere. FEMS Microbiology Ecol. 1997;22:183–192. doi: 10.1111/j.1574-6941.1997.tb00370.x. [DOI] [Google Scholar]
  • 21.Gouzou L., Burtin G., Philippy R., Bartoli F., Heulin T. Effect of inoculation with Bacillus polymyxa on soil aggregation in the wheat rhizosphere: preliminary examination. Geoderma. 1993;56:479–491. doi: 10.1016/0016-7061(93)90128-8. [DOI] [Google Scholar]
  • 22.Dijksterhuis J., Sanders M., Gorris L.G.M., Smid E.J. Antibiosis plays a role in the context of direct interaction during antagonism of Paenibacillus polymyxa towards Fusarium oxysporum. J Appl Microbiol. 1999;86:13–21. doi: 10.1046/j.1365-2672.1999.t01-1-00600.x. [DOI] [PubMed] [Google Scholar]
  • 23.Timmusk S., Nicander B., Granhall U., Tillberg E. Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem. 1999;31:1847–1852. doi: 10.1016/S0038-0717(99)00113-3. [DOI] [Google Scholar]
  • 24.Timmusk S., West P., Gow Neil A.R., Wagner E.G. Mechanism of action of the plant growth promoting bacterium Paenibacillus polymyxa. Uppsala, Sweden: Uppsala University; 2003. Antagonistic effects of Paenibacillus polymyxa towards the oomycete plant pathogens Phytophthora palmivora and Pythium aphanidermatum, pp. 1–28. [Google Scholar]
  • 25.Timmusk S., Grantcharova N., Wagner E.G.H. Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol. 2005;71:7292–7300. doi: 10.1128/AEM.71.11.7292-7300.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Seldin L., Azevedo F.S., Alviano D.S., Alviano C.S., Bastos M.C. Inhibitory activity of Paenibacillus polymyxa SCE2 against human pathogenic micro-organisms. Lett Appl Microbiol. 1999;28:423–427. doi: 10.1046/j.1365-2672.1999.00563.x. [DOI] [PubMed] [Google Scholar]
  • 27.Cai M., Liu J., Wei Y. Enhanced Biohydrogen Production from Sewage Sludge with Alkaline Pretreatment. Environ Sci Technol. 2004;38:3195–3202. doi: 10.1021/es0349204. [DOI] [PubMed] [Google Scholar]
  • 28.Mota F.F., Nóbrega A., Marriel I.E., Paiva E., Seldin L. Genetic diversity of Paenibacillus polymyxa populations isolated from the rhizosphere of four cultivars of maize (Zea mays) planted in Cerrado soil. Appl Soil Ecol. 2002;20:119–132. doi: 10.1016/S0929-1393(02)00016-1. [DOI] [Google Scholar]
  • 29.Santos S.C., Rodrigues Coelho M.R., Seldin L. Evaluation of the diversity of Paenibacillus polymyxa strains by using the DNA of bacteriophage IPy1 as a probe in hybridization experiments. Lett Appl Microbiol. 2002;35:52–56. doi: 10.1046/j.1472-765X.2002.01132.x. [DOI] [PubMed] [Google Scholar]
  • 30.Nübel U., Engelen B., Felske A., Snaidr J., Wieshuber A., Amann R.I., Ludwig W., Backhaus H. Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol. 1996;178:5636–5643. doi: 10.1128/jb.178.19.5636-5643.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Bloemberg G.V., Lugtenberg B.J. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol. 2001;4:343–350. doi: 10.1016/S1369-5266(00)00183-7. [DOI] [PubMed] [Google Scholar]
  • 32.Loon L.C. Plant responses to plant growthpromoting rhizobacteria. Eur J Plant Pathol. 2007;119:243–254. doi: 10.1007/s10658-007-9165-1. [DOI] [Google Scholar]
  • 33.Emmert E.A., Handelsman J. Biocontrol of plant disease: a (Gram) positive perspective. FEMS Microbiol Lett. 1999;171:1–9. doi: 10.1111/j.1574-6968.1999.tb13405.x. [DOI] [PubMed] [Google Scholar]
  • 34.Seldin L., Penido E.G.C. Identification of Paenibacillus azotofixans using API tests. Antonie van Leeuwenhoek. 1986;52:403–409. doi: 10.1007/BF00393468. [DOI] [PubMed] [Google Scholar]
  • 35.Lindberg T., Granhall U. Isolation and characterization of dinitrogen-fixing bacteria from the rhizosphere of temperate cereals and forage grasses. Appl Environ Microbiol. 1984;48:683–689. doi: 10.1128/aem.48.4.683-689.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Holl F.B., Chanway C.P., Turkington R., Radley R.A. Response of crested wheatgrass (Agropyron cristatum L.), perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.) to inoculation with Bacillus polymyxa. Soil Biol Biochem. 1988;20:19–24. doi: 10.1016/0038-0717(88)90121-6. [DOI] [Google Scholar]
  • 37.Mok M.C. Cytokinins and plant development-an overview. In: Mok D.W.S., Mok M.C., editors. Cytokinins: Chemistry, Activity and Function. New York: CRC Press; 1994. pp. 115–166. [Google Scholar]
  • 38.Lindberg T., Granhall U. Acetylene reduction in gnotobiotic cultures with rhizosphere bacteria and wheat. Plant and Soil. 1986;92:171–180. doi: 10.1007/BF02372631. [DOI] [Google Scholar]
  • 39.Çakmakçi R., Erat M., Erdoğan U., Dönmez M.F. The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants. J Plant Nut Soil Sci. 2007;170:288–295. doi: 10.1002/jpln.200625105. [DOI] [Google Scholar]
  • 40.Timmusk S., Wagner E.G. The Plant-Growth-Promoting Rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact. 1999;12:951–959. doi: 10.1094/MPMI.1999.12.11.951. [DOI] [PubMed] [Google Scholar]
  • 41.Ryu C.-M., Kima J., Choi O., Kima S.H., Park C.S. Improvement of biological control capacity of Paenibacillus polymyxa E681 by seed pelleting on sesame. Biol Control. 2006;39:282–289. doi: 10.1016/j.biocontrol.2006.04.014. [DOI] [Google Scholar]
  • 42.Li B., Ravnskov S., Xie G., Larsen J. Biocontrol of Pythium damping-off in cucumber by arbuscular mycorrhizaassociated bacteria from the genus Paenibacillus. BioControl. 2007;52:863–875. doi: 10.1007/s10526-007-9076-2. [DOI] [Google Scholar]
  • 43.Kurusu K., Ohba K., Arai T., Fukushima K. New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa. I. Isolation and characterization. J Antibiot. 1987;40:1506–1514. doi: 10.7164/antibiotics.40.1506. [DOI] [PubMed] [Google Scholar]
  • 44.Kuroda J., Fukai T., Nomura T. Collision-induced dissociation of ring-opened cyclic depsipeptides with a guanidino group by electrospray ionization/ion trap mass spectrometry. J Mass Spectrom. 2001;36:30–37. doi: 10.1002/jms.101. [DOI] [PubMed] [Google Scholar]
  • 45.Beatty P.H., Jensen S.E. Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotics active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J Microbiol. 2002;48:159–169. doi: 10.1139/w02-002. [DOI] [PubMed] [Google Scholar]
  • 46.Siddiqui Z.A., Baghel G., Akhtar M.S. Biocontrol of Meloidogyne javanica by Rhizobium and plant growth promoting rhizobacteria on lentil. World J Microbiol Biotechnol. 2007;23:435–441. doi: 10.1007/s11274-006-9244-z. [DOI] [Google Scholar]
  • 47.McAuliffe O., Ross R.P., Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev. 2001;25:285–308. doi: 10.1111/j.1574-6976.2001.tb00579.x. [DOI] [PubMed] [Google Scholar]
  • 48.Beck H.C., Hansen A.M., Lauritsen F.R. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa. FEMS Microbiology Lett. 2003;220:67–73. doi: 10.1016/S0378-1097(03)00054-5. [DOI] [PubMed] [Google Scholar]
  • 49.Stern N.J., Svetoch E.A., Eruslanov B.V., Kovalev Y.N., Volodina L.I., Perelygin V.V., Mitsevich E.V., Mitsevich I.P., Levchuk V.P. Paenibacillus polymyxa purified bacteriocin to control Campylobacter jejuni in chickens. J Food Prot. 2005;68:1450–1453. doi: 10.4315/0362-028x-68.7.1450. [DOI] [PubMed] [Google Scholar]
  • 50.Dunn C., Delany I., Fenton A., O’Gara F. Mechanisms involved in biocontrol by microbial inoculants. Agronomie. 1997;16:721–729. doi: 10.1051/agro:19961017. [DOI] [Google Scholar]
  • 51.Budi S.W., Tuinen D., Arnould C., Dumas-Gaudot E., Gianinazzi-Pearson V., Gianinazzi S. Hydrolytic enzyme activity of Paenibacillus sp. strain B2 and effects of the antagonistic bacterium on cell integrity of two soil-borne pathogenic fungi. Appl Soil Ecol. 2000;15:191–199. doi: 10.1016/S0929-1393(00)00095-0. [DOI] [Google Scholar]
  • 52.Pham P.L., Taillandier P., Delmas M., Strehaiano P. Production of xylanases by Bacillus polymyxa using lignocellulosic wastes. Indust Crops Prod. 1998;7:195–203. doi: 10.1016/S0926-6690(97)00048-4. [DOI] [Google Scholar]
  • 53.Isorna P., Polaina J., Latorre-García L., Cañada F.J., González B., Sanz-Aparicio J. Crystal structures of Paenibacillus polymyxa β-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I glycosidases. J Mol Biol. 2007;371:1204–1218. doi: 10.1016/j.jmb.2007.05.082. [DOI] [PubMed] [Google Scholar]
  • 54.Alvarez V.M., Weid I., Seldin L., Santos A.L.S. Influence of growth conditions on the production of extracellular proteolytic enzymes in Paenibacillus peoriae NRRL BD-62 and Paenibacillus polymyxa SCE2. Lett Appl Microbiol. 2006;43:625–630. doi: 10.1111/j.1472-765X.2006.02015.x. [DOI] [PubMed] [Google Scholar]
  • 55.Ishii Y., Ohshiro T., Aoi Y., Suzuki M., Izum Y. Identification of the gene encoding a NAD(P)H-Flavin oxidoreductase coupling with dibenzothiophene (DBT)-desulfurizing enzymes from the DBT-nondesulfurizing bacterium Paenibacillus polymyxa A-l. J Biosci Bioeng. 2000;90:220–222. [PubMed] [Google Scholar]
  • 56.Karpunina L.V., Melńikova U.Y., Konnova S.A. Biological role of lectins from the nitrogen-fixing Paenibacillus polymyxa strain 1460 during bacterial-plantroot interactions. Curr Microbiol. 2003;47:376–378. doi: 10.1007/s00284-002-3987-z. [DOI] [PubMed] [Google Scholar]
  • 57.Lu F., Sun L., Lu Z., Bie X., Fang Y., Liu S. Isolation and identification of an endophytic strain EJS-3 producing novel fibrinolytic enzymes. Curr Microbiol. 2007;54:435–439. doi: 10.1007/s00284-006-0591-7. [DOI] [PubMed] [Google Scholar]
  • 58.Moon S.H., Park J.M., Chun H.Y., Kim S.J. Comparisons of physical properties of bacterial cellulose produced in different culture conditions using saccharified food wastes. Biotechnol Bioprocess Eng. 2006;11:26–31. doi: 10.1007/BF02931864. [DOI] [Google Scholar]
  • 59.Zanchetta P., Lagarde N., Guezennec J. A new bone-healing material: A hyaluronic acid-like bacterial exopolysaccharide. Calcif Tissue Int. 2003;72:74–79. doi: 10.1007/s00223-001-2091-x. [DOI] [PubMed] [Google Scholar]
  • 60.Mansel P.W.A. Polysaccharides in skin care. Cosmet Toilet. 1994;109:67–72. [Google Scholar]
  • 61.Chu K.H., Kim E.Y. Predictive modelling of competitive biosorption equilibrium data. Biotehchnol Bioprocess Eng. 2006;11:67–71. doi: 10.1007/BF02931871. [DOI] [Google Scholar]
  • 62.Shi F., Xu Z., Cen P. Optimization of γ-polyglutamic acid production by Bacillus subtilis ZJU-7 using a surfaceresponse methodology. Biotechnol Bioprocess Eng. 2006;11:251–257. doi: 10.1007/BF02932039. [DOI] [Google Scholar]
  • 63.Santhiya D., Subramanian S., Natarajan K.A. Surface chemical studies on sphalerite and galena using extracellular polysaccharides isolated from Bacillus polymyxa. J Coll Int Sci. 2002;256:237–248. doi: 10.1006/jcis.2002.8681. [DOI] [PubMed] [Google Scholar]
  • 64.Kumar A.S., Mody K., Jha B. Bacterial exopolysaccharides-a perception. J Basic Microbiol. 2007;47:103–117. doi: 10.1002/jobm.200610203. [DOI] [PubMed] [Google Scholar]
  • 65.Shoda M., Sugano Y. Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng. 2005;10:1–8. doi: 10.1007/BF02931175. [DOI] [Google Scholar]
  • 66.Acosta M.P., Valdman E., Leite S.G.F., Battaglini F., Ruzal S.M. Biosorption of copper by Paenibacillus polymyxa cells and their exopolysaccharide. World J Microbiol Biotechnol. 2005;21:1157–1163. doi: 10.1007/s11274-005-0381-6. [DOI] [Google Scholar]
  • 67.Deo N., Natarajan K.A. Studies on interaction of Paenibacillus polymyxa with iron ore minerals in relation to beneficiation. Int J Miner Process. 1998;55:41–60. doi: 10.1016/S0301-7516(98)00020-9. [DOI] [Google Scholar]
  • 68.Patra P., Natarajan K.A. Microbially induced flotation and flocculation of pyrite and sphalerite. Coll Surf B: Biointerfaces. 2004;36:91–99. doi: 10.1016/j.colsurfb.2004.05.010. [DOI] [PubMed] [Google Scholar]
  • 69.Patra P., Natarajan K.A. Surface chemical studies on selective separation of pyrite and galena in the presence of bacterial cells and metabolic products of Paenibacillus polymyxa. J Coll Interface Sci. 2006;298:720–729. doi: 10.1016/j.jcis.2006.01.017. [DOI] [PubMed] [Google Scholar]
  • 70.Vijayalakshmi S.P., Raichur A.M. Bioflocculation of high-ash Indian coals using Paenibacillus polymyxa. Int J Miner Process. 2002;67:199–210. doi: 10.1016/S0301-7516(02)00044-3. [DOI] [Google Scholar]
  • 71.Takeda M., Kurane R., Koizumi J., Nakamura I. A protein bioflocculant produced by Rhodococcus erythropolis. Agric Biol Chem. 1991;55:2663–2664. [Google Scholar]
  • 72.Toeda K., Kurane R. Microbial flocculant from Alcaligenes cupidus KT201. Agric Biol Chem. 1991;55:2793–2799. [Google Scholar]
  • 73.Nam J.S., Kwon G.S., Lee O.S., Hwang J.S., Lee J.D., Yoon B.D. Bioflocculant produced by Aspergillus sp. JS-42. Biosci Biotech Biochem. 1996;60:325–327. doi: 10.1271/bbb.60.325. [DOI] [PubMed] [Google Scholar]
  • 74.Fattom A., Shilo M. Phormidium J-1 bioflocclant: production and activity. Arch Microbiol. 1984;139:421–426. doi: 10.1007/BF00408390. [DOI] [Google Scholar]
  • 75.Gong X.-Y., Luan Z.-K., Pei Y.-S., Wang S.-G. Culture conditions for flocculant production by Paenibacillus polymyxa BY-28. J Environ Sci Health. 2003;38:657–669. doi: 10.1081/ESE-120016931. [DOI] [PubMed] [Google Scholar]
  • 76.Krakowski L., Krzyzanowski J., Wrona Z., Siwicki A.K. The effect of nonspecific immunostimulation of pregnant mares with 1,3/1,6 glucan and levamisole on the immunoglobulins levels in colostrums, selected indices of nonspecific cellular and humoral immunity in foals in neonatal and postnatal period. Vet Immunol Immunopathol. 1999;68:1–11. doi: 10.1016/S0165-2427(99)00006-9. [DOI] [PubMed] [Google Scholar]
  • 77.Seviour R.J., Stasinopoulos S.J., Auer D.P.F., Gibbs P.A. Production of pullulan and other exopolysaccharides by filamentous fungi. Crit Rev Biotechnol. 1992;12:279–298. doi: 10.3109/07388559209069196. [DOI] [Google Scholar]
  • 78.Jung H.K., Hong J.H., Park S.C., Park B.K., Nam D.H., Kim S.D. Production and physicochemical characterization of β-glucan produced by Paenibacillus polymyxa JB115. Biotechnol Bioprocess Eng. 2007;12:713–719. doi: 10.1007/BF02931090. [DOI] [Google Scholar]
  • 79.Ui S., Mesoda H., Moraki H. Laboratory-scale production of 2,3-butanediol isomers (D(−), L(+), and meso) by bacterial fermentations. J Ferment Technol. 1983;61:253–259. [Google Scholar]
  • 80.Nakashimada Y., Kanai K., Nishio N. Optimization of dilution rate, pH and oxygen supply on optical purity of 2, 3-butanediol produced by Paenibacillus polymyxa in chemostat culture. Biotechnol Lett. 1998;20:1133–1138. doi: 10.1023/A:1005324403186. [DOI] [Google Scholar]
  • 81.Nakashimada Y., Mabwoto B., Kashiwamuba T., Kakizono T., Nishio N. Enhanced 2,3-butanediol production by addition of acetic acid in Paenibacillus polymyxa. 2000;90:661–664. doi: 10.1263/jbb.90.661. [DOI] [PubMed] [Google Scholar]
  • 82.Syu M.J. Biological production of 2,3-butanediol. Appl Microbiol Biotechnol. 2001;55:10–18. doi: 10.1007/s002530000486. [DOI] [PubMed] [Google Scholar]
  • 83.Flickinger M.C. Current biological research in conversion of cellulosic carbohydrates into liquid fuels: how far have we come? Biotechnol Bioeng. 1980;22:27–48. doi: 10.1002/bit.260220613. [DOI] [Google Scholar]
  • 84.Miekelaonm M.N., Werkman C.H. Effect of aldehydes and fatty acids as added hydrogen acceptors on the fermentation of glucose by Aerobacter indologenes. J Bacteriol. 1939;37:619–628. doi: 10.1128/jb.37.6.619-628.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Neish A.C. Production and properties of 2,3-butanediol. IV. Purity of the levo-rotatory 2,3-butanediol produced by Aerobacillus polymyxa. Can J Res. 1945;23:10–16. [Google Scholar]
  • 86.Yu E.K., Saddker J.N. Enhanced production of 2,3-butanediol by Klebsiella pneumoniae grown on high sugar concentrations in the presence of acetic acid. Appl Environ Microbial. 1982;44:777–784. doi: 10.1128/aem.44.4.777-784.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Garg S.K., Jain A. Fermentative prodcution of 2,3-butanediol: a review. Bioresour Technol. 1995;51:103–109. doi: 10.1016/0960-8524(94)00136-O. [DOI] [Google Scholar]
  • 88.Saha B.C., Bothast R.J. Production of 2,3-butanediol by newly isolated Enterbacter cloacae. Appl Microbiol Biotechnol. 1999;52:321–326. doi: 10.1007/s002530051526. [DOI] [PubMed] [Google Scholar]
  • 89.Canepa P., Cauglia F., Gilio A., Perego P. Biotechnological production of 2,3-butanediol from agroindustrial food wastes. Chem Biochem Eng Q. 2000;14:53–56. [Google Scholar]
  • 90.Yoon S.S., Mekalanos J.J. 2,3-butanediol synthesis and the emergence of the Vibrio cholerae El Tor Biotype. Infect Immun. 2006;74:6547–6556. doi: 10.1128/IAI.00695-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Ji X.-J., Huang H., Li S., Du J., Lian M. Enhanced 2,3-butanediol production by altering the mixed acid fermentation pathway in Klebsiella oxytoca. Biotechnol Lett. 2008;30:731–734. doi: 10.1007/s10529-007-9599-8. [DOI] [PubMed] [Google Scholar]
  • 92.Lebuhn M., Heulin T., Hartmann A. Production of auxin and other indolic and phenolic compounds by Paenibacillus polymyxa strains isolated from diff erent proximity to plant roots. FEMS Microbiol Ecol. 1997;22:325–334. doi: 10.1111/j.1574-6941.1997.tb00384.x. [DOI] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES