Abstract
Dramatically rising oil prices and increasing awareness of the dire environmental consequences of fossil fuel use, including startling effects of climate change, are refocusing attention worldwide on the search for alternative fuels. Hydrogen is poised to become an important future energy carrier. Renewable hydrogen production is pivotal in making it a truly sustainable replacement for fossil fuels, and for realizing its full potential in reducing greenhouse gas emissions. One attractive option is to produce hydrogen through microbial fermentation. This process would use readily available wastes as well as presently unutilized bioresources, including enormous supplies of agricultural and forestry wastes. These potential energy sources are currently not well exploited, and in addition, pose environmental problems. However, fuels are relatively low value products, placing severe constraints on any production process. Therefore, means must be sought to maximize yields and rates of hydrogen production while at the same time minimizing energy and capital inputs to the bioprocess. Here we review the various attributes of the characterized hydrogen producing bacteria as well as the preparation and properties of mixed microflora that have been shown to convert various substrates to hydrogen. Factors affecting yields and rates are highlighted and some avenues for increasing these parameters are explored. On the engineering side, we review the potential waste pre-treatment technologies and discuss the relevant bioprocess parameters, possible reactor configurations, including emerging technologies, and how engineering design-directed research might provide insight into the exploitation of the significant energy potential of biomass resources.
Keywords: Biofuels, Biohydrogen, Fermentation, Bioreactors, Waste treatment
Full Text
The Full Text of this article is available as a PDF (666.2 KB).
References
- 1.Witze A. That’s oil, folks. Nature. 2007;345:14–17. doi: 10.1038/445014a. [DOI] [PubMed] [Google Scholar]
- 2.Pielke R., Jr, Wigley T., Green C. Dangerous assumptions: How big is the energy challenge of climate change? Nature. 2008;452:531–532. doi: 10.1038/452531a. [DOI] [PubMed] [Google Scholar]
- 3.Waldrop M.M. Kill king corn. Nature. 2007;449:637. doi: 10.1038/449637a. [DOI] [PubMed] [Google Scholar]
- 4.Cassman K.G., Liska A.J. Food and fuel for all: realistic or foolish? Biofuels Bioprod Bioref. 2007;1:18–23. doi: 10.1002/bbb.3. [DOI] [Google Scholar]
- 5.Tollefson J. Not your father’s biofuels. Nature. 2008;451:880–883. doi: 10.1038/451880a. [DOI] [PubMed] [Google Scholar]
- 6.Scharlemann J.P.W., Laurance W.F. How Green Are Biofuels? Science. 2008;319:43–44. doi: 10.1126/science.1153103. [DOI] [PubMed] [Google Scholar]
- 7.Righelato R., Spracklen D.V. Carbon Mitigation by Biofuels or by Saving and Restoring Forests? Science. 2007;317:902. doi: 10.1126/science.1141361. [DOI] [PubMed] [Google Scholar]
- 8.Laurance W. Switch to Corn Promotes Amazon Deforestation. Science. 2007;318:1721. doi: 10.1126/science.318.5857.1721b. [DOI] [PubMed] [Google Scholar]
- 9.Ruth L. Bio or bust? The economic and ecological cost of biofuels. EMBO reports. 2008;9:130–133. doi: 10.1038/sj.embor.2008.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Sustainable bioenergy: a framework for decision makers. (2007) UN-Energy
- 11.Wackett L.P. Microbial-based motor fuels: science and technology. Micro Biotech. 2008;1:211–225. doi: 10.1111/j.1751-7915.2007.00020.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Keasling J.D., Chou H. Metabolic engineering delivers next-generation biofuels. Nat Biotech. 2008;26:298–299. doi: 10.1038/nbt0308-298. [DOI] [PubMed] [Google Scholar]
- 13.Hallenbeck P.C., Benemann J.R. Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy. 2002;27:1185–1193. doi: 10.1016/S0360-3199(02)00131-3. [DOI] [Google Scholar]
- 14.Hallenbeck P.C., Kochian K.V., Weissman J.C., Benemann J.R. Solar energy conversion with hydrogen producing cultures of the blue-green alga, Anabaena cylindrical. Biotech Bioeng Symp. 1978;8:283–297. [Google Scholar]
- 15.Miyamoto K., Hallenbeck P.C., Benemann J.R. Solar energy conversion by nitrogen limited cultures of Anabaena cylindrica. J Ferment Technol. 1979;57:287–293. [Google Scholar]
- 16.Yetis M., Gunduz U., Eroglu I., Yucel M., Turker L. Photoproduction of hydrogen from sugar refinery wastewater by Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy. 2000;25(11):1035–1041. doi: 10.1016/S0360-3199(00)00027-6. [DOI] [Google Scholar]
- 17.Zhu H., Ueda S., Asada Y., Miyake J. Hydrogen production as a novel process of wastewater treatment - studies on tofu wastewater with entrapped R. sphaeroides and mutagenesis. Int J Hydrogen Energy. 2002;27(11–12):1349–1357. doi: 10.1016/S0360-3199(02)00118-0. [DOI] [Google Scholar]
- 18.Koku H., Eroglu I., Gunduz U., Yucel M., Turker L. Kinetics of biological hydrogen production by the photosynthetic bacterium Rhodobacter sphaeroides O.U. 001. Int J Hydrogen Energy. 2003;28(4):381–388. doi: 10.1016/S0360-3199(02)00080-0. [DOI] [Google Scholar]
- 19.Hallenbeck P.C. Fundamentals of the fermentative production of hydrogen. Water Sci Technol. 2005;52:21–29. [PubMed] [Google Scholar]
- 20.Hawkes F.R., Dinsdale R., Hawkes D.L., Hussy I. Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrogen Energy. 2002;27(11–12):1339–1347. doi: 10.1016/S0360-3199(02)00090-3. [DOI] [Google Scholar]
- 21.Kapdan I.K., Kargi F. Bio-hydrogen production from waste materials. Enzyme Microb Techn. 2006;38(5):569–582. doi: 10.1016/j.enzmictec.2005.09.015. [DOI] [Google Scholar]
- 22.Ginkel S., Sung S., Lay J.J. Biohydrogen Production as a Function of pH and Substrate Concentration. Environ Sci Technnol. 2001;35(24):4726–4730. doi: 10.1021/es001979r. [DOI] [PubMed] [Google Scholar]
- 23.Yu H., Zhu Z., Hu W., Zhang H. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy. 2002;27(11–12):1359–1365. doi: 10.1016/S0360-3199(02)00073-3. [DOI] [Google Scholar]
- 24.Yang H., Shen J. Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch. Int J Hydrogen Energy. 2006;31(15):2137–2146. doi: 10.1016/j.ijhydene.2006.02.009. [DOI] [Google Scholar]
- 25.Benemann J.R. Hydrogen biotechnology: Progress and prospects. Nat Biotech. 1996;14(9):1101–1103. doi: 10.1038/nbt0996-1101. [DOI] [PubMed] [Google Scholar]
- 26.Fang H.H.P., Zhu H., Zhang T. Phototrophic hydrogen production from glucose by pure and co-cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int J Hydrogen Energy. 2006;31(15):2223–2230. doi: 10.1016/j.ijhydene.2006.03.005. [DOI] [Google Scholar]
- 27.Kim M.-S., Baek J.-S., Lee J.K. Comparison of H2 accumulation by Rhodobacter sphaeroides KD131 and its uptake hydrogenase and PHB synthase deficient mutant. Int J Hydrogen Energy. 2006;31(1):121–127. doi: 10.1016/j.ijhydene.2004.10.023. [DOI] [Google Scholar]
- 28.Kim M.-S., Baek J.-S., Yun Y.-S., Jun Sim S., Park S., Kim S.-C. Hydrogen production from Chlamydomonas reinhardtii biomass using a two-step conversion process: Anaerobic conversion and photosynthetic fermentation. Int J Hydrogen Energy. 2006;31(6):812–816. doi: 10.1016/j.ijhydene.2005.06.009. [DOI] [Google Scholar]
- 29.Erõdlu E., Erõdlu, Gündüz U., Türker L., Yücel M. Biological hydrogen production from olive mill wastewater with two-stage processes. Int J Hydrogen Energy. 2006;31:1527–1535. doi: 10.1016/j.ijhydene.2006.06.020. [DOI] [Google Scholar]
- 30.Tao Y., Chen Y., Wu Y., He Y., Zhou Z. High hydrogen yield from a two-step process of dark- and photofermentation of sucrose. Int J Hydrogen Energy. 2007;32:200–206. doi: 10.1016/j.ijhydene.2006.06.034. [DOI] [Google Scholar]
- 31.Nath K., Muthukumar M., Kumar A., Das D. Kinetics of two-stage fermentation process for the production of hydrogen. Intl J Hydrogen Energy. 2008;33:1195–1203. doi: 10.1016/j.ijhydene.2007.12.011. [DOI] [Google Scholar]
- 32.Chen C.Y., Yang M.H., Yeh K.L., Liu C.H., Chang J.S. Biohydrogen production using sequential two-stage dark and photo fermentation processes. Int J Hydrogen Energy. 2008;33:4755–4762. doi: 10.1016/j.ijhydene.2008.06.055. [DOI] [Google Scholar]
- 33.Asada Y., Tokumoto M., Aihara Y., Oku M., Ishimi K., Wakayama T., Miyake J., Tomiyama M., Kohno H. Hydrogen production by co-cultures of Lactobacillus and a photosynthetic bacterium, Rhodobacter sphaeroides RV. Int JHydrogen Energy. 2006;31:1509–1513. doi: 10.1016/j.ijhydene.2006.06.017. [DOI] [Google Scholar]
- 34.Liu H., Grot S., Logan B.E. Electrochemically assisted microbial production of hydrogen from acetate. Environ Sci Technol. 2005;39:4317–4320. doi: 10.1021/es050244p. [DOI] [PubMed] [Google Scholar]
- 35.Rozendal R.A., Hamelers H.V.M., Euverink G.J.W., Metz S.J., Buisman C.J.N. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int J Hydrogen Energy. 2006;31:1632–1640. doi: 10.1016/j.ijhydene.2005.12.006. [DOI] [Google Scholar]
- 36.Ditzig J., Liu H., Logan B.E. Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor [BEAMR] Int J Hydrogen Energy. 2007;32:2296–2304. doi: 10.1016/j.ijhydene.2007.02.035. [DOI] [Google Scholar]
- 37.Cheng S., Logan B.E. Sustainable and efficient biohydrogen production via electrohydrogenesis. Proc Natl Acad Sci. 2007;104:18871–18873. doi: 10.1073/pnas.0706379104. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 38.Rozendal R.A., Hamelers H.V.M., Molenkamp R.J., Buisman C.J.N. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Res. 2007;41:1984–1994. doi: 10.1016/j.watres.2007.01.019. [DOI] [PubMed] [Google Scholar]
- 39.Call D., Logan B.E. Hydrogen Production in a Single Chamber Microbial Electrolysis Cell Lacking a Membrane. Environ Sci Technol. 2008;42:3401–3406. doi: 10.1021/es8001822. [DOI] [PubMed] [Google Scholar]
- 40.Rozendal R.A., Jeremiasse A.W., Hamelers H.V.M., Buisman C.J.N. Hydrogen production with a microbial biocathode. Environ Sci Tech. 2008;42:629–634. doi: 10.1021/es071720+. [DOI] [PubMed] [Google Scholar]
- 41.Tartakovsky B., Manuel M.-F., Neburchilov V., Wang H., Guiot S.R. Biocatalyzed hydrogen production in a continuous flow microbial fuel cell with a gas phase cathode. J Power Sources. 2008;182:291–297. doi: 10.1016/j.jpowsour.2008.03.062. [DOI] [Google Scholar]
- 42.Cord-Ruwisch R., Lovley D.R., Schink B. Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners. Appl Environ Microbiol. 1998;64:2232–2236. doi: 10.1128/aem.64.6.2232-2236.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Methe B.A., Nelson K.E., Eisen J.A., Paulsen I.T., Nelson W., Heidelberg J.F., Wu D., Wu M., Ward N., Beanan M.J., Dodson R.J., Madupu R., Brinkac L.M., Daugherty S.C., DeBoy R.T., Durkin A.S., Gwinn M., Kolonay J.F., Sullivan S.A., Haft D.H., Selengut J., Davidsen T.M., Zafar N., White O., Tran B., Romero C., Forberger H.A., Weidman J., Khouri H., Feldblyum T.V., Utterback T.R., Aken S.E., Lovley D.R., Fraser C.M. Genome of Geobacter sulfurreducens: Metal Reduction in Subsurface Environments. Science. 2002;302:1967–1969. doi: 10.1126/science.1088727. [DOI] [PubMed] [Google Scholar]
- 44.Pham T.H., Rabaey K., Aelterman P., Clauwaert P., Schamphelaire L., Boon N., Verstraete W. Microbial Fuel Cells in Relation to Conventional Anaerobic Digestion. Technology Eng Life Sci. 2006;6:285–292. doi: 10.1002/elsc.200620121. [DOI] [Google Scholar]
- 45.Freguia S, Rabaey K, Yuan Z and Keller J (2008) Syntrophic Processes Drive the Conversion of Glucose in Microbial Fuel Cell Anodes. Environ Sci Tech DOI: 10.1021/es800482e [DOI] [PubMed]
- 46.Kodama Y., Watanabe K. An electricity-generating prosthecate bacterium strain Mfc52 isolated from a microbial fuel cell. FEMS Microbiol Lett. 2008;288:55–61. doi: 10.1111/j.1574-6968.2008.01326.x. [DOI] [PubMed] [Google Scholar]
- 47.Zuo Y., Xing D., Regan J.M., Logan B.E. Isolation of the Exoelectrogenic Bacterium Ochrobactrum anthropi YZ-1 by Using a U-Tube Microbial Fuel Cell. Appl Environ Microbiol. 2008;74:3130–3137. doi: 10.1128/AEM.02732-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Kalia V.C., Lal S., Ghai R., Mandal M., Chauhan A. Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol. 2003;21:152–156. doi: 10.1016/S0167-7799(03)00028-3. [DOI] [PubMed] [Google Scholar]
- 49.Hedderich R., Forzi L. Energy-Converting [NiFe] Hydrogenases: more than Just H2 Activation. J Mol Microbiol Biotechnol. 2005;10:92–104. doi: 10.1159/000091557. [DOI] [PubMed] [Google Scholar]
- 50.Vignais P.M., Billoud B. Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev. 2007;107:4206–72. doi: 10.1021/cr050196r. [DOI] [PubMed] [Google Scholar]
- 51.Vignais P.M. Hydrogenases and h[+]-reduction in primary energy conservation. Results Probl Cell Differ. 2008;45:223–252. doi: 10.1007/400_2006_027. [DOI] [PubMed] [Google Scholar]
- 52.Porwal S., Kumar T., Lal S., Rani A., Kumar S., Cheema S., Purohit H.J., Sharma R., Patel S.K.S., Kalia V.C. Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresource Technol. 2008;99:5444–5451. doi: 10.1016/j.biortech.2007.11.011. [DOI] [PubMed] [Google Scholar]
- 53.Meyer J. Miraculous catch of iron-sulfur protein sequences in the Sargasso Sea. FEBS Lett. 2004;570:1–6. doi: 10.1016/j.febslet.2004.06.030. [DOI] [PubMed] [Google Scholar]
- 54.Meyer J. [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci. 2007;64:1063–1084. doi: 10.1007/s00018-007-6477-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 55.Shin J.H., Yoon J.H., Ahn E.K., Kim M.S., Sim S.J., Park T.H. Fermentative hydrogen production by the newly isolated Enterbacter asburiae SNU-1. Int J Hydrogen Energy. 2007;32:192–199. doi: 10.1016/j.ijhydene.2006.08.013. [DOI] [Google Scholar]
- 56.O-Thong S., Prasertsan P., Karakashev D., Angelidaki I. Thermophilic fermentative hydrogen production by the newly isolated Thermoanaerobacterium thermosaccharolyticum PSU-2. Int J Hydrogen Energy. 2008;33:1204–1214. doi: 10.1016/j.ijhydene.2007.12.015. [DOI] [Google Scholar]
- 57.Oh Y.-K., Seol E.-H., Kim J.R., Park S. Fermentative biohydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int J Hydrogen Energy. 2003;28:1353–1359. doi: 10.1016/S0360-3199(03)00024-7. [DOI] [Google Scholar]
- 58.Oh Y.-K., Seol E.-H., Lee E.Y., Park S. Fermentative hydrogen production by a new chemoheterotrophic bacterium Rhodopseudomonas palustris P4. Int J Hydrogen Energy. 2002;27:1373–1379. doi: 10.1016/S0360-3199(02)00100-3. [DOI] [Google Scholar]
- 59.Kadar Z., Vrije T., Noorden G.E.V., Budde M.A.W., Szengyel Z., Reczey K., Classen P.A.M. Yields from glucose, xylose and paper sludge hydrolysate during hydrogen production by the extreme thermophilic Caldicellulosiruptor saccharolyticus. Appl Biochem Biotechnol. 2004;114:497–508. doi: 10.1385/ABAB:114:1-3:497. [DOI] [PubMed] [Google Scholar]
- 60.Chen S., Song L., Dong X. Sporoacetigenium mesophilum gen. nov., sp. Nov., isolated from an anaerobic digester treating municipal solid waste and sewage. Int J Syst Evol Microbiol. 2006;56:721–725. doi: 10.1099/ijs.0.63686-0. [DOI] [PubMed] [Google Scholar]
- 61.Eriksen N.T., Nielsen T.M., Iversen N. Hydrogen production in anaerobic and microaerobic Thermotoga neapolitana. Biotechnol Lett. 2008;30:103–109. doi: 10.1007/s10529-007-9520-5. [DOI] [PubMed] [Google Scholar]
- 62.Ooteghem S.A., Beer S.K., Yue P.C. Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl Biochem Biotechnol. 2002;98-100:177–189. doi: 10.1385/ABAB:98-100:1-9:177. [DOI] [PubMed] [Google Scholar]
- 63.Ooteghem S.A., Jones A., Lelie D., Dong B., Mahajan D. H2 production and carbon utilization by Thermotoga neapolitana under anaerobic and microaerobic growth conditions. Biotechnol Lett. 2004;26:1223–1232. doi: 10.1023/B:BILE.0000036602.75427.88. [DOI] [PubMed] [Google Scholar]
- 64.Zhang M.-L., Fan T.-Y., Xing Y., Pan C.-M., Zhang G.-S., Lay J.-J. Enhanced Biohydrogen production from cornstalk wastes with acidification pre-treatment by mixed anaerobic cultures. Biomass and Bioenergy. 2007;31:250–254. doi: 10.1016/j.biombioe.2006.08.004. [DOI] [Google Scholar]
- 65.Tang G.-L., Huang J., Sun Z.-J., Tang Q.-Q., Yan C.-H., Liu G.-Q. Biohydrogen production from cattle wastewater by enriched anaerobic mixed consortia: influence of fermentation temperature and pH. J of Biosci and Bioeng. 2008;1:80–87. doi: 10.1263/jbb.106.80. [DOI] [PubMed] [Google Scholar]
- 66.Mohan S.V., Bhaskar Y.V., Sharma P.N. Biohydrogen production from chemical wastewater treatment in biofilm configured reactor operated in periodic discontinuous batch mode by selectively enriched anaerobic mixed consortia. Water Res. 2007;41:2652–1664. doi: 10.1016/j.watres.2007.02.015. [DOI] [PubMed] [Google Scholar]
- 67.Sivaramakrishna D, Sreekanth D, Himabindu V and Anjaneyulu (2008) Biological hydrogen production from probiotic wastewater as substrate by selectively enriched anaerobic mixed microflora (article in press) DOI 10.1016/j.renene.2008.04.016
- 68.Mohan S.V., Babu L.B., Sharma P.N. Effect of various pre-treatment methods on anaerobic mixed microflora to enhance Biohydrogen production utilizing dairy wastewater as substrate. Bioresource Technol. 2008;99:59–67. doi: 10.1016/j.biortech.2006.11.044. [DOI] [PubMed] [Google Scholar]
- 69.Lee K.-S., Hsu Y.-F., Lo Y.-C., Lin P.-J., Lin C.-Y., Chang J.-S. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. Int J Hydrogen Energy. 2008;33:1565–1572. doi: 10.1016/j.ijhydene.2007.10.019. [DOI] [Google Scholar]
- 70.Lo Y.-C., Bai M.-D., Chen W.-M., Chang J.-S. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation strategy. Bioresource Technology. 2008;99:8299–8303. doi: 10.1016/j.biortech.2008.03.004. [DOI] [PubMed] [Google Scholar]
- 71.Lin C.-Y., Hung W.-C. Enhancement of fermentative hydrogen/ethanol production from cellulose using mixed anaerobic cultures. Int J Hydrogen Energy. 2008;33:3660–3667. doi: 10.1016/j.ijhydene.2008.04.036. [DOI] [Google Scholar]
- 72.Defeng Xing D., Ren N., Rittmann B.E. Genetic diversity of hydrogen-producing bacteria in an acidophilic ethanol-H2-coproducing System, analyzed using the [Fe]-hydrogenase gene. Appl Environ Microbiol. 2008;74:1232–1239. doi: 10.1128/AEM.01946-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 73.Kapdan I.K., Kargi F. Bio-hydrogen production from waste materials. Enz Micro Technol. 2006;38(5):569–582. doi: 10.1016/j.enzmictec.2005.09.015. [DOI] [Google Scholar]
- 74.Fang H.H.P., Liu H. Effect of pH on hydrogen production from glucose by a mixed culture. Bioresource Technol. 2002;82(1):87–93. doi: 10.1016/S0960-8524(01)00110-9. [DOI] [PubMed] [Google Scholar]
- 75.Logan B.E., Oh S.E., Kim I.S., Ginkel S. Biological Hydrogen Production Measured in Batch Anaerobic Respirometers. Environ Sci Technol. 2002;36(11):2530–2535. doi: 10.1021/es015783i. [DOI] [PubMed] [Google Scholar]
- 76.Ogino H., Miura T., Ishimi K., Seki M., Yoshida H. Hydrogen Production from Glucose by Anaerobes. Biotechnol Prog. 2005;21(6):1786–1788. doi: 10.1021/bp050224r. [DOI] [PubMed] [Google Scholar]
- 77.Jeong T.-Y., Cha G.-C., Yeom S.H., Choi S.S. Comparison of hydrogen production by four representative hydrogen-producing bacteria. J Ind Eng Chem. 2008;14(3):333–337. doi: 10.1016/j.jiec.2007.09.014. [DOI] [Google Scholar]
- 78.Chen W.-M., Tseng Z.-J., Lee K.-S., Chang J.-S. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. Int J Hydrogen Energy. 2005;30(10):1063–1070. doi: 10.1016/j.ijhydene.2004.09.008. [DOI] [Google Scholar]
- 79.Khanal S.K., Chen W.-H., Li L., Sung S. Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy. 2004;29(11):1123–1131. [Google Scholar]
- 80.Chang F.-Y., Lin C.-Y. Biohydrogen production using an up-flow anaerobic sludge blanket reactor. Int J Hydrogen Energy. 2004;29(1):33–39. doi: 10.1016/S0360-3199(03)00082-X. [DOI] [Google Scholar]
- 81.Wang Y., Mu Y., Yu H.-Q. Comparative performance of two upflow anaerobic biohydrogen-producing reactors seeded with different sludges. Int J Hydrogen Energy. 2007;32(8):1086–1094. doi: 10.1016/j.ijhydene.2006.07.016. [DOI] [Google Scholar]
- 82.Zhao Q.-B., Yu H.-Q. Fermentative H2 production in an upflow anaerobic sludge blanket reactor at various pH values. Bioresource Technol. 2008;99(5):1353–1358. doi: 10.1016/j.biortech.2007.02.005. [DOI] [PubMed] [Google Scholar]
- 83.Kyazze G.N., Martinez-Perez R., Dinsdale G.C., Premier F.R., Hawkes A.J., Guwy D., Hawkes D.L. Influence of substrate concentration on the stability and yield of continuous biohydrogen production. Biotechnol Bioeng. 2006;93(5):971–979. doi: 10.1002/bit.20802. [DOI] [PubMed] [Google Scholar]
- 84.Venkata Mohan S., Lalit Babu V., Sarma P.N. Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate. Enzyme Microb Techn. 2007;41(4):506–515. doi: 10.1016/j.enzmictec.2007.04.007. [DOI] [Google Scholar]
- 85.Oh S., Logan B.E. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Research. 2005;39(19):4673–4682. doi: 10.1016/j.watres.2005.09.019. [DOI] [PubMed] [Google Scholar]
- 86.Ginkel S.W., Oh S.-E., Logan B.E. Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrogen Energy. 2005;30(15):1535–1542. doi: 10.1016/j.ijhydene.2004.09.017. [DOI] [Google Scholar]
- 87.Yang H., Shao P., Lu T., Shen J., Wang D., Xu Z., Yuan X. Continuous bio-hydrogen production from citric acid wastewater via facultative anaerobic bacteria. Int J Hydrogen Energy. 2006;31(10):1306–1313. doi: 10.1016/j.ijhydene.2005.11.018. [DOI] [Google Scholar]
- 88.Venkata Mohan S., Lalit Babu V., Sarma P.N. Anaerobic biohydrogen production from dairy wastewater treatment in sequencing batch reactor (AnSBR): Effect of organic loading rate. Enzyme Microb Techn. 2007;41(4):506–515. doi: 10.1016/j.enzmictec.2007.04.007. [DOI] [Google Scholar]
- 89.Yu H., Zhu Z., Hu W., Zhang H. Hydrogen production from rice winery wastewater in an upflow anaerobic reactor by using mixed anaerobic cultures. Int J Hydrogen Energy. 2002;27(11–12):1359–1365. doi: 10.1016/S0360-3199(02)00073-3. [DOI] [Google Scholar]
- 90.Lo Y.-C., Bai M.-D., Chen W.-M., Chang J.-S. Cellulosic hydrogen production with a sequencing bacterial hydrolysis and dark fermentation. Bioresource Technol. 2008;99:8299–8303. doi: 10.1016/j.biortech.2008.03.004. [DOI] [PubMed] [Google Scholar]
- 91.Levin D.B., Islam R., Cicek N., Sparling R. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrogen Energy. 2006;31:1496–1503. doi: 10.1016/j.ijhydene.2006.06.015. [DOI] [Google Scholar]
- 92.Zhu H., Parker W., Basnar R., Proracki A., Falleta P., Béland M., Seto P. Biohydrogen production by anaerobic codigestion of municipal food waste and sewage sludges. Int J Hydrogen Energy. 2008;33:3651–3659. doi: 10.1016/j.ijhydene.2008.04.040. [DOI] [Google Scholar]
- 93.Hawkes F.R., Dinsdale R., Hawkes D.L., Hussy I. Sustainable fermentative hydrogen production: challenges for process optimisation. Int J Hydrogen Energy. 2002;27(11–12):1339–1347. doi: 10.1016/S0360-3199(02)00090-3. [DOI] [Google Scholar]
- 94.Lin C.-N., Wu S.-Y., Lee K.-S., Lin P.-J., Lin C.-Y., Chang J.S. Integration of fermentative hydrogen process and fuel cell for on-line electricity generation. Int J Hydrogen Energy. 2007;32:802–808. doi: 10.1016/j.ijhydene.2006.09.047. [DOI] [Google Scholar]
- 95.Gavala H.N., Skiadas J.V., Ahring B.K. Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int J Hydrogen Energy. 2006;31:1164–1175. doi: 10.1016/j.ijhydene.2005.09.009. [DOI] [Google Scholar]
- 96.Yokoi H., Saitsu A., Uchida H., Hirose J., Hayashi S., Takasaki Y. Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng. 2001;91(1):58–63. doi: 10.1263/jbb.91.58. [DOI] [PubMed] [Google Scholar]
- 97.Fan K.-S., Kan N.-R., Lay J.-J. Effect of hydraulic retention time on anaerobic hydrogenesis in CSTR. Bioresource Technol. 2006;97:84–89. doi: 10.1016/j.biortech.2005.02.014. [DOI] [PubMed] [Google Scholar]