Abstract
The lactic acid bacteria (LAB) play an important role in the fermentation of vegetables to improve nutritive value, palatability, acceptability, microbial quality and shelf life of the fermented produce. The LAB associated with beetroot and carrot fermentation were identified and characterized using different molecular tools. Amplified ribosomal DNA restriction analysis (ARDRA) provided similar DNA profile for the 16 LAB strains isolated from beetroot and carrot fermentation while repetitive extragenic palindromic PCR (rep-PCR) genotyping could differentiate the LAB strains into eight genotypes. Thirteen strains represented by five genotypes could be clustered in five distinct groups while three LAB strains exhibiting distinct genotypes remained ungrouped. These genotypes could be identified to be belonging to L. plantarum group by 16S rDNA sequencing. The recAnested multiplex PCR employing species-specific primers for the L. plantarum group members identified the LAB strains of six genotypes to be L. paraplantarum and the other two genotypes to be L. pentosus. Three genotypes of L. paraplantarum were consistently found on the third and sixth day of beetroot fermentation whereas a distinct genotype of L. paraplantarum and L. pentosus appeared predominant on the tenth day. From carrot Kanji two distinct genotypes of L. paraplantarum and one genotype of L. pentosus were identified. REP-PCR DNA fingerprinting coupled with 16S rDNA sequencing and recA-nested multiplex PCR could clearly identify as well as differentiate the diverse L. plantarum group strains involved in the fermentation.
Keywords: Identification, Lactic acid bacteria, Kanji, REP-PCR, recA-multiplex PCR
Full Text
The Full Text of this article is available as a PDF (482.2 KB).
References
- 1.Sura K., Garg S., Garg F.C. Microbiological and biochemical changes during fermentation of Kanji. J Food Sci Technol. 2001;38:165–167. [Google Scholar]
- 2.Winkler C., Wirleitner B., Schroecksnadel K., Schennach H., Fuchs D. In vitro effects of beet root juice on stimulated and unstimulated peripheral blood mononuclear cells. Am J Biochem Biotech. 2005;1:180–185. doi: 10.3844/ajbbsp.2005.180.185. [DOI] [Google Scholar]
- 3.Gancheva A., Pot B., Vanhonacker K., Hoste B., Kersters K. A polyphasic approach towards the identification of strains belonging to Lactobacillus acidophilus and related species. Syst Appl Microbiol. 1999;22:573–585. doi: 10.1016/S0723-2020(99)80011-3. [DOI] [PubMed] [Google Scholar]
- 4.Tynkkynen S., Satokari R., Saarela M., Mattila-Sandholm T., Saxelin M. Comparison of ribotyping, randomly amplified polymorphic DNA analysis, and pulsed-field gel electrophoresis in typing of Lactobacillus rhamnosus and L. casei strains. Appl Environ Microbiol. 1999;65:3908–3914. doi: 10.1128/aem.65.9.3908-3914.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Rodas A.M., Ferrer S., Pardo I. Polyphasic study of wine Lactobacillus strains: taxonomic implications. Int J Syst Evol Microbiol. 2005;55:197–207. doi: 10.1099/ijs.0.63249-0. [DOI] [PubMed] [Google Scholar]
- 6.Sánchez I., Seseña S., Palop L.L. Polyphasic study of the genetic diversity of lactobacilli associated with ‘Almagro’ eggplants spontaneous fermentation, based on combined numerical analysis of randomly amplified polymorphic DNA and pulsed-field gel electrophoresis patterns. J Appl Microbiol. 2004;97:446–458. doi: 10.1111/j.1365-2672.2004.02324.x. [DOI] [PubMed] [Google Scholar]
- 7.Rivas B.D., Marcobal A., Munoz R. Development of multilocus sequence typing method for analysis of Lactobacillus plantarum strains. Microbiol. 2006;152:85–93. doi: 10.1099/mic.0.28482-0. [DOI] [PubMed] [Google Scholar]
- 8.Olive D.M., Bean P. Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol. 1999;37:1661–1669. doi: 10.1128/jcm.37.6.1661-1669.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Meunier J.R., Grimont P.A. Factors affecting reproducibility of random amplified polymorphic DNA fingerprinting. Res Microbiol. 1993;144:373–379. doi: 10.1016/0923-2508(93)90194-7. [DOI] [PubMed] [Google Scholar]
- 10.Belkum A., Scherer S., Alphen L., Verbrugh H. Short-Sequence DNA Repeats in Prokaryotic Genomes. Microbiol Mol Biol Rev. 1998;62:275–29. doi: 10.1128/mmbr.62.2.275-293.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Versalovic J., Koeuth T., Lupski J.R. Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res. 1991;19:6823–6831. doi: 10.1093/nar/19.24.6823. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Vaquero I., Marcobal A., Muñoz R. Tannase activity by lactic acid bacteria isolated from grape must and wine. Int J Food Microbiol. 2004;96:199–204. doi: 10.1016/j.ijfoodmicro.2004.04.004. [DOI] [PubMed] [Google Scholar]
- 13.Weisburg W.G., Barns S.M., Pelletier D.A., Lane D.J. 16S rDNA amplification for phylogenetic study. J Bacteriol. 1991;173:697–703. doi: 10.1128/jb.173.2.697-703.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Torriani S., Felis G.E., Dellaglio F. Differentiation of Lactobacillus plantarum, L. pentosus, L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl Env Microbiol. 2001;67:3450–3454. doi: 10.1128/AEM.67.8.3450-3454.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Bringel F., Castioni A., Olukoya D.K., Felis G.E., Torriani S., Dellaglio F. Lactobacillus plantarum subsp. argentoratensis subsp. nov., isolated from vegetable matrices. Int J Syst Evol Microbiol. 2005;55:1629–1634. doi: 10.1099/ijs.0.63333-0. [DOI] [PubMed] [Google Scholar]
- 16.Felis G.E., Dellaglio F. Taxonomy of Lactobacilli and Bifidobacteria. Curr Issues Intestinal Microbiol. 2007;8:44–61. [PubMed] [Google Scholar]
- 17.Spano G., Beneduce L., Tarantino D., Zapparoli G., Massa S. Characterization of Lactobacillus plantarum from wine must by PCR species-specific and RAPD-PCR. Lett Appl Microbiol. 2002;35:370–374. doi: 10.1046/j.1472-765X.2002.01200.x. [DOI] [PubMed] [Google Scholar]