Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2010 Oct 30;50(3):253–262. doi: 10.1007/s12088-010-0061-6

Rumen methanogens: a review

S K Sirohi 1,, Neha Pandey 1, B Singh 1, A K Puniya 2
PMCID: PMC3450062  PMID: 23100838

Abstract

The Methanogens are a diverse group of organisms found in anaerobic environments such as anaerobic sludge digester, wet wood of trees, sewage, rumen, black mud, black sea sediments, etc which utilize carbon dioxide and hydrogen and produce methane. They are nutritionally fastidious anaerobes with the redox potential below −300 mV and usually grow at pH range of 6.0–8.0 [1]. Substrates utilized for growth and methane production include hydrogen, formate, methanol, methylamine, acetate, etc. They metabolize only restricted range of substrates and are poorly characterized with respect to other metabolic, biochemical and molecular properties.

Keywords: Rumen methanogens, Methanogens, Methane

Full Text

The Full Text of this article is available as a PDF (687.4 KB).

References

  • 1.Stewart CS and Bryant MP (1998) The rumen bacteria. The rumen microbial ecosystem Elsevier applied science In Hobson P. N. (Ed). p 21–76
  • 2.Balch W.E., Fox G.E., Magram L.J., Woese C.R. Methanogens: Reevaluation of a Unique Biological Group. Microbiological reviews. 1979;43:260–296. doi: 10.1128/mr.43.2.260-296.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Kandler O., Konig H. Chemical composition of the peptidoglycan-free cell walls of methanogenic bacteria. Arch Microbiol. 1978;118:141–152. doi: 10.1007/BF00415722. [DOI] [PubMed] [Google Scholar]
  • 4.Kandler O and Konig H (1985) Cell envelopes of archaebacteria. In C. R. Woese and R. S. Wolfe (ed.), The bacteria, vol. 8:413–457
  • 5.Konig H., Kandler O. N-Acetyltalosaminuronic acid a constituent of the pseudomurein of the genus Methanobacterium. Arch Microbiol. 1979;123:295–299. doi: 10.1007/BF00406664. [DOI] [Google Scholar]
  • 6.Konig H., Stetter K.O. Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe C. 1982;3:478–490. [Google Scholar]
  • 7.Kandler O. Cell wall structures and their phylogenetic implications. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 1 Orig Reihe C. 1982;3:149–160. [Google Scholar]
  • 8.Keltjens J.T., Huberts M.J., Laarhoven W.H., Vogels G.D. Structural elements of methanopterin, a novel pterin present in Methanobacterium thermoautotrophicum. Eur J Biochem. 1983;130:537–544. doi: 10.1111/j.1432-1033.1983.tb07183.x. [DOI] [PubMed] [Google Scholar]
  • 9.Hammes W.P., Winter J., Kandler O. The sensitivity of the pseudomurein-containing genus Methanobacterium to inhibitors of murein synthesis. Arch Microbiol. 1979;123:275–279. doi: 10.1007/BF00406661. [DOI] [Google Scholar]
  • 10.Zillig W., Gierl A., Schreiber G., Wunderl S., Janekovic P., Stetter K.O., Klenk H.P. The archaebacterium Thermofilum pendens represents a novel genus of the thermophilic, anaerobic, sulfur respiring Thermoproteales. Syst Appl Microbiol. 1983;4:79–87. doi: 10.1016/S0723-2020(83)80035-6. [DOI] [PubMed] [Google Scholar]
  • 11.Kandler O and Konig H (1985) Cell envelopes of archaebacteria. In C. R. Woese and R. S. Wolfe (eds.), The bacteria, vol. 8. 413–457
  • 12.Zehnder A.J.B., Huser B.A., Brock T.D., Wuhrmann K. Characterization of an acetate decarboxylating nonhydrogen-oxidizing methane bacterium. Arch Microbiol. 1980;124:1–11. doi: 10.1007/BF00407022. [DOI] [PubMed] [Google Scholar]
  • 13.Zeikus J.G. The biology of methanogenic bacteria. Bacteriol Rev. 1977;41:514–541. doi: 10.1128/br.41.2.514-541.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Lovely D.R., Greening R.C., Ferry J.G. Rapidly growing rumen methanogenic organism that synthesizes CoM and has a high affinity for formate. Appl Environ Microbiol. 1984;48:81–87. doi: 10.1128/aem.48.1.81-87.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Miller T.L., Wolin M.J., Hongxue Z., Bryant M.P. Characteristics of methanogens isolated from bovine rumen. Applied and Environmental Microbiology. 1985;51:201–202. doi: 10.1128/aem.51.1.201-202.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Bryant M.P. Commentary on the Hungate technique for culture of anaerobic bacteria. Am J Clin Nutr. 1972;25:1324–1328. doi: 10.1093/ajcn/25.12.1324. [DOI] [PubMed] [Google Scholar]
  • 17.Bryant M.P., McBride B.C., Wolfe R.S. Hydrogen-oxidizing methane bacteria. I. Cultivation and methanogenesis. J Bacteriol. 1968;95:1118–1123. doi: 10.1128/jb.95.3.1118-1123.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Macy J.M., Snellen T.E., Hungate R.E. Use of syringe methods for anaerobiosis. J Clin Nutr. 1972;25:1318–1323. doi: 10.1093/ajcn/25.12.1318. [DOI] [PubMed] [Google Scholar]
  • 19.Miller T.L., Wolin M.J. Formation of hydrogen and formate by Ruminococcus albus. J Bacteriol. 1973;116:836–842. doi: 10.1128/jb.116.2.836-846.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Edwards T., McBride B.C. New method for the isolation and identification of methanogenic bacteria. Appl Microbiol. 1975;29:540–545. doi: 10.1128/am.29.4.540-545.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Balch W.E., Wolfe R.S. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol. 1976;32:781–791. doi: 10.1128/aem.32.6.781-791.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Hermann M., Noll K.M., Wolfe R.S. Improved agar bottle plate for isolation of methanogens or other anaerobes in a defined gas atmosphere. Appl Environ Microbiol. 1986;51:1124–1126. doi: 10.1128/aem.51.5.1124-1126.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Balderson W.L., Payne W.J. Inhibition of methanogenesis in salt marsh sediments and whole cell suspensions of methanogenic bacteria by nitrogen oxides. Appl Environ Microbiol. 1976;32:264–260. doi: 10.1128/aem.32.2.264-269.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Nelson D.R., Zeikus J.G. Rapid method for the radioisotopic analysis of gaseous end products of anaerobic metabolism. Appl Microbiol. 1974;28:258–261. doi: 10.1128/am.28.2.258-261.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Nadkarni M.A., Martin F.E., Jacques N.A., Hunter N. Determination of bacterial load by real time PCR using a broad-range (universal) probe and primers set. Microbiology. 2002;148:257–266. doi: 10.1099/00221287-148-1-257. [DOI] [PubMed] [Google Scholar]
  • 26.Tatsuoka N., Mohammed N., Mitsumori M., Tajima K., Hara K., Kurihara M., Itabashi H. Analysis of methanogens in the bovine rumen by polymerase chain reaction single-strand conformation polymorphism. Animal Science Journal. 2007;78:512–518. doi: 10.1111/j.1740-0929.2007.00470.x. [DOI] [Google Scholar]
  • 27.Tagawa T., Syutsubo K., Sekiguchi Y., Ohashi A., Harada H. Quantification of methanogen cell density in anaerobic granular sludge consortia by fluorescence in-situ hybridization. Water Sci Technol. 2000;42:77–82. [Google Scholar]
  • 28.Stabnikova O., Liu X.Y., Wang J.Y., Ivanov V. Quantification of methanogens by fluorescence in situ hybridization with oligonucleotide probe. Appl microbial biotechnol. 2006;73:696–702. doi: 10.1007/s00253-006-0490-7. [DOI] [PubMed] [Google Scholar]
  • 29.Kamagata Y., Mikami E. Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol. 1991;41:191–196. doi: 10.1099/00207713-41-2-191. [DOI] [PubMed] [Google Scholar]
  • 30.Mayerhofer L.E., Macario A.J., Macario E.C. Lamina, a novel multicellular form of Methanosarcina mazei S-6. J Bacteriol. 1992;174:309–314. doi: 10.1128/jb.174.1.309-314.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Agrawal K., Harada H., Tseng I.C., Okui H. Treatment of dilute wastewater in a UASB reactor at a moderate temperature: microbiological aspects. J Ferment Bioeng. 1997;83:185–190. doi: 10.1016/S0922-338X(97)83580-5. [DOI] [Google Scholar]
  • 32.Ahring B.K., Ibrahim A.A., Mladenovska Z. Effect of temperature increase from 55 to 65°C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Res. 2001;35:2446–2452. doi: 10.1016/S0043-1354(00)00526-1. [DOI] [PubMed] [Google Scholar]
  • 33.Postgate J.R. Methane as a minor product of pyruvate metabolism by sulphate-reducing and other bacteria. J Gen Microbiol. 1969;57:293–302. doi: 10.1099/00221287-57-3-293. [DOI] [PubMed] [Google Scholar]
  • 34.Wolfe R.S. In: Methanogenesis: Ecology, Physiology, Biochemistry and Genetics. Ferry J. G., editor. New York: Chapman & Hall; 1993. p. 1. [Google Scholar]
  • 35.Graham D.E., White R.H. Elucidation of methanogenic coenzyme biosyntheses: from spectroscopy to genomics. Nat Prod Rep. 2002;19:133–147. doi: 10.1039/b103714p. [DOI] [PubMed] [Google Scholar]
  • 36.Eirich L.D., Vogels G.D., Wolfe R.S. Distribution of coenzyme F420 and properties of its hydrolytic fragments. J Bacteriol. 1979;140:20–27.48. doi: 10.1128/jb.140.1.20-27.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Daniels L., Fuchs G., Thauer R.K., Zeikus J.G. Carbon monoxide oxidation by methanogenic bacteria. J Bacteriol. 1977;132:118–126. doi: 10.1128/jb.132.1.118-126.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Jacobson F.S., Daniels L., Box J.A., Walsh C.T., Orme-Johnson W.H. Purification and properties of an 8-hydroxy-5-deazaflavin-reducing hydrogenase from Methano-bacterium thermoautotrophicum. J Biol Chem. 1982;257:3385–3388. [PubMed] [Google Scholar]
  • 39.Tzeng S.F., Wolfe R.S., Bryant M.P. Factor 420-dependent pyridine nucleotide-linked hydrogenase system of Methanobacterium ruminatium. J Bacteriol. 1975;121:184–191. doi: 10.1128/jb.121.1.184-191.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Yamazaki S. A selenium-containing hydrogenase from Methanococcus vannielii. J Biol Chem. 1982;257:7926–7929. [PubMed] [Google Scholar]
  • 41.Tzeng S.F., Bryant M.P., Wolfe R.S. Factor 420-dependent pyridine nucleotide-linked formate metabolism of Methanobacterium ruminantium. J Bacteriol. 1975;121:192–196. doi: 10.1128/jb.121.1.192-196.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Yamazaki S., Tsai L., Stadtman T.C., Jacobson F.S., Walsh C. Stereochemical studies of 8-hydroxy-5-deazaflavin-dependent NADP+ reductase from Methano-coccus vannielii. J Biol Chem. 1980;255:9025–9027. [PubMed] [Google Scholar]
  • 43.Fuchs G., Stupperich E. Autotrophic CO2 fixation pathway in Methanobacterium thermoautotrophicum. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg Abt 1 Orig Reihe C. 1982;3:277–288. [Google Scholar]
  • 44.Zeikus J.G., Fuchs G., Kenealy W., Thauer R.K. Oxidoreductases involved in cell carbon synthesis of M. thermoautotrophicum. J Bacteriol. 1977;132:604–613. doi: 10.1128/jb.132.2.604-613.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Hausinger R.P., Orme-Johnson W.H., Walsh C. Factor 390 chromophores: phosphodiester between AMP or GMP and methanogen Factor 420. Biochemistry. 1985;24:1629–1633. doi: 10.1021/bi00328a010. [DOI] [PubMed] [Google Scholar]
  • 46.McBride B.C., Wolfe R.S. A new coenzyme of methyl transfer, coenzyme M. Biochemistry. 1971;10:2317–2324. doi: 10.1021/bi00799a024. [DOI] [PubMed] [Google Scholar]
  • 47.Romesser J.A., Wolfe R.S. CDR factor, a new coenzyme required for carbon dioxide reduction to methane by extracts of Methanobacterium thermoautotrophicum. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg Abt 1 Orig. Reihe C. 1982;3:271–276. [Google Scholar]
  • 48.Leigh J.A., Rinehart K.L., Jr, Wolfe R.S. Structure of methanofuran, the carbon dioxide reduction factor of M. thermoautotrophicum. J Am Chem Soc. 1984;106:3636–3640. doi: 10.1021/ja00324a037. [DOI] [Google Scholar]
  • 49.Jones J.B., Bowers B., Stadtman T.C. Methanococcus vannielii: ultrastructure and sensitivity to detergents and antibiotics. J.Bacteriol. 1977;130:1357–1363. doi: 10.1128/jb.130.3.1357-1363.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Blakley R. The biochemistry of folic acid and relate pteridines. New York: Interscience Publishers, Inc.; 1969. [Google Scholar]
  • 51.Fisher J., Spencer R., Walsh C. Enzyme-catalyzed redox reactions with the flavin analogues 5-deazariboflavin, 5-deazariboflavin-5′-phosphate, and 5-deazariboflavin 5′-diphosphate, 5′-5′-adenosine ester. Biochemistry. 1976;15:1054–1064. doi: 10.1021/bi00650a016. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES