Abstract
Glucose dehydrogenase (GDH) of Gram-negative bacteria is a membrane bound enzyme catalyzing the oxidation of glucose to gluconic acid and is involved in the solubilization of insoluble mineral phosphate complexes. A 2.4 kb glucose dehydrogenase gene (gcd) of Enterobacter asburiae sharing extensive homology to the gcd of other enterobacteriaceae members was cloned in a PCR-based directional genome walking approach and the expression confirmed in Escherichia coli YU423 on both MacConkey glucose agar and hydroxyapatite (HAP) containing media. Mineral phosphate solubilization by the cloned E. asburiae gcd was confirmed by the release of significant amount of phosphate in HAP containing liquid medium. gcd was over expressed in E. coli AT15 (gcd::cm) and the purified recombinant protein had a high affinity to glucose, and oxidized galactose and maltose with lower affinities.
The enzyme was highly sensitive to heat and EDTA, and belonged to Type I, similar to GDH of E. coli.
Keywords: Enterobacter asburiae, Glucose dehydrogenase, Mineral phosphate solubilization
Full Text
The Full Text of this article is available as a PDF (220.5 KB).
References
- 1.Alexander M. Introduction to Soil Microbiology. New York: John Wiley and sons; 1977. pp. 333–339. [Google Scholar]
- 2.Ames B.N. Assay of inorganic phosphate, total phosphate, and phosphatases. Methods Enzymol. 1964;8:115–118. doi: 10.1016/0076-6879(66)08014-5. [DOI] [Google Scholar]
- 3.Dokter P., Frank J., Duine J.A. Purification and characterization of quinoprotein glucose dehydrogenase from Acinetobacter calcoaceticus L. M. D. 79.41. Biochem J. 1986;239:163–167. doi: 10.1042/bj2390163. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Duine J.A., Frank J., Zeeland J.K. Glucose dehydrogenase from Acinetobacter calcoaceticus: a ‘quinoprotein’. FEBS letters. 1979;108:443–446. doi: 10.1016/0014-5793(79)80584-0. [DOI] [PubMed] [Google Scholar]
- 5.Duine J.A. Quinoproteins: enzymes containing the quinonoid cofactor pyrroloquinoline quinone, topaquinone or tryptophan-tryptophan quinine. Eur J Biochem. 1991;200:271–284. doi: 10.1111/j.1432-1033.1991.tb16183.x. [DOI] [PubMed] [Google Scholar]
- 6.Dully J.R., Grieve P.A. A simple technique for eliminating interference by detergens in the Lowry method of protein determination. Anal Biochem. 1975;64:136–141. doi: 10.1016/0003-2697(75)90415-7. [DOI] [PubMed] [Google Scholar]
- 7.Erni B. Glucose transport in Escherichia coli. FEMS Microbiol Rev. 1989;63:3–24. doi: 10.1016/0168-6445(89)90004-1. [DOI] [PubMed] [Google Scholar]
- 8.Fliege R., Tong S., Shibata A., Nickerson K.W., Conway T. The Entner-Doudoroff pathway in Escherichia coli is induced for oxidative glucose metabolism via pyrroloquinoline quinone-dependent glucose dehydrogenase. App Environ Microbiol. 1992;58:3826–3829. doi: 10.1128/aem.58.12.3826-3829.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Goldstein A.H. Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by Gram-negative bacteria. Biol Agri Hort. 1995;12:185–193. [Google Scholar]
- 10.Gottschalk G. Bacterial Metabolism. 2nd eds. Berlin: Springer-Verlag; 1986. [Google Scholar]
- 11.Gyaneshwar P., Parekh L.J., Archana G., Poole P.S., Collins M.D., Hutson R.A., Kumar N.G. Involvement of a phosphate starvation inducible glucose dehydrogenase in soil phosphate solubilization by Enterobacter asburiae. FEMS Microbiol Lett. 1999;171:223–229. doi: 10.1111/j.1574-6968.1999.tb13436.x. [DOI] [Google Scholar]
- 12.Nautiyal C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999;170:265–270. doi: 10.1111/j.1574-6968.1999.tb13383.x. [DOI] [PubMed] [Google Scholar]
- 13.Postma P.W., Broekhuizen C.P., Geerse R.H. The role of PEP: Carbohydrate phosphotransferase system in the regulation of bacterial metabolism. FEMS Microbiol Rev. 1989;63:69–80. doi: 10.1016/0168-6445(89)90010-7. [DOI] [PubMed] [Google Scholar]
- 14.Reddy M.K., Nair S., Sopory S.K. A new approach for efficient directional genome walking using polymerase chain reaction. Anal Biochem. 2002;306:154–158. doi: 10.1006/abio.2002.5645. [DOI] [PubMed] [Google Scholar]
- 15.Sharma V., Kumar V., Archana G., Kumar N.G. Substrate specificity of glucose dehydrogenase (GDH) of Enterobacter asburiae PS13 and rock phosphate solubilization with GDH substrates as C sources. Can J Microbiol. 2005;51:477–482. doi: 10.1139/w05-032. [DOI] [PubMed] [Google Scholar]
- 16.Sode K., Witarto A.B., Watanabe K., Noda K., Ito S., Tsugawa W. Over expression of PQQ glucose dehydrogenase in Escherichia coli under holoenzyme forming condition. Biotechnol Lett. 1994;16:1265–1268. [Google Scholar]
- 17.Sode K., Yoshida H., Matsumura K., Kikuchi T., Watanabe M., Yasutake N., Ito S., Sano H. Elucidation of the region responsible for EDTA tolerance in PQQ glucose dehydrogenase by constructing Escherichia coli and Acinetobacter calcoaceticus chimeric enzymes. Biochem Biophys Res Commun. 1995;211:268–273. doi: 10.1006/bbrc.1995.1806. [DOI] [PubMed] [Google Scholar]
- 18.Yamada M., Sumi K., Matsushita K., Adachi O., Yamada Y. Topological analysis of quinoprotein glucose dehydrogenase in Escherichia coli and its ubiquinone binding site. J Biol Chem. 1993;268:12812–12817. [PubMed] [Google Scholar]
- 19.Yamada M., Elias M.D., Matsushita K., Migita C.T., Adachi O. Escherichia coli PQQ-containing quinoprotein glucose dehydrogenase: its structure comparison with other quinoproteins. Biochem Biophys Acta. 2003;1647:185–192. doi: 10.1016/s1570-9639(03)00100-6. [DOI] [PubMed] [Google Scholar]