Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2007 Jul 8;47(2):176–179. doi: 10.1007/s12088-007-0034-6

Lignocellulolytic enzyme production from submerged fermentation of paddy straw

B K Mishra 1, A K Pandey Lata 2,
PMCID: PMC3450104  PMID: 23100663

Abstract

Five strains of cellulolytic bacteria and four strains of Phanerochaete chrysosporium were evaluated for the lignocellulolytic enzyme production during submerged fermentation (SmF) of paddy straw. Extra-cellular enzyme assay for CMCase, FPase, Cellobiase, Xylanase, Lignin peroxidase and Laccase enzymes was performed after 7 and 15 days of submerged fermentation. Cellulomonas cellulans MTCC 23, Cytophaga hutchinsonii NCIM 2338 and Phanerochaete chrysosporium MTCC 787 were found to produce higher lignocellulolytic enzyme activities than rest of the cultures after 15 days of fermentation.

Keywords: Paddy straw, Submerged fermentation, Lignocellulolytic enzymes

Full Text

The Full Text of this article is available as a PDF (119.2 KB).

References

  • 1.Ljungdahl L.G., Eriksson K.E. Ecology of microbial cellulose degradation. Advances in Microbial Ecology. 1985;8:237–299. [Google Scholar]
  • 2.Srinivasan M.C., Laxman R.S. Microbial cellulase: A status report on enzyme production and technology aspects. Indian J Microbiol. 1988;28:266–275. [Google Scholar]
  • 3.Atlas R.M., Bartha R. Microbial ecology: fundamentals and applications. 4th edition. California: Benjamin/Cummings Science Publishing; 1998. pp. 386–413. [Google Scholar]
  • 4.Tien M., Kirk T.K. Lignin degrading enzyme from the hymenomycete, Phanerochaete chrysosporium. Science. 1983;221:661–662. doi: 10.1126/science.221.4611.661. [DOI] [PubMed] [Google Scholar]
  • 5.Tuomela M., Vikman M., Hatakka A., Itavaara M.Biodegradation of lignin in a compost environment: a review Bioresource Technology 20007269–183.10.1016/S0960-8524(99)00104-2 [Google Scholar]
  • 6.FAO (1998) Proceedings of the Regional Expert Consultation on Modern Applications of Biomass Energy, FAO Regional Wood Energy Development Programme in Asia, Report No. 36, Bangkok
  • 7.Juliano B.O. Rice Chemistry and Technology. 2nd Edition. Minnesota: American Association of Cereal Chemistry; 1985. Rice hull and rice straw; pp. 689–755. [Google Scholar]
  • 8.Reese E.T., Mandels M. Enzymatic hydrolysis of cellulose and its derivatives. Methods in Carbohydrate Chemistry. 1963;3:139–142. [Google Scholar]
  • 9.Ghose TK, Bailey HJ, Bisaria VS & Enari, TM (1983) Measurement of cellulase activities. Final Recommendations, Commission of Biotechnology. Internatl Union of Pure Appl Chem, pp 1–13
  • 10.Bailey M.J., Biely P., Poutanen K.Interlaboratory testing of methods for assay of Xylanase activity J Biotechnol 199223257–270.10.1016/0168-1656(92)90074-J [Google Scholar]
  • 11.Tien M & Kirk TK (1988) Lignin peroxidase of Phanerochaete chrysosporium In: Methods in Enzymology (Eds Wood WA and Kellogg ST) Academic Press 161:238–258
  • 12.Munoz C., Guillen F., Martinez A.T., Martinez M.J. Induction and characterization of Laccase in the lignocellulolytic fungus Pleurotus erygnii. Curr Microbiol. 1997;34:1–5. doi: 10.1007/s002849900134. [DOI] [PubMed] [Google Scholar]
  • 13.Mandels M., Andreoti R., Roche C. Measurement of saccharifying cellulase. Biotechnology and Bioengineering Symposium. 1976;6:21–33. [PubMed] [Google Scholar]
  • 14.Lakshmikant Cellulose degradation and cellulase activity of five cellulolytic fungi. World J Microbiol Biotechnol. 1990;6:64–66. doi: 10.1007/BF01225357. [DOI] [PubMed] [Google Scholar]
  • 15.Kashem M.A., Manchur M.A., Rahman M.S., Anwar M.N.Effect of carbon and nitrogen sources on the production of reducing sugars, extra-cellular protein and cellulolytic enzymes by two cellulolytic bacterial isolates Pak J Biol Sci 200471660–1663.10.3923/pjbs.2004.1660.1663 [Google Scholar]
  • 16.Rodriguez H., Enriquez A., Volfova O.The localization and activity of Cellulomonas xylanase on sugar cane bagasse pith Can J Microbiol 19853175–756.10.1139/m85-015 [Google Scholar]
  • 17.Beguin P., Aubert J.P. The biological degradation of cellulose. FEMS Microbiol Rev. 1994;13:25–58. doi: 10.1111/j.1574-6976.1994.tb00033.x. [DOI] [PubMed] [Google Scholar]
  • 18.Ponce-Noylola T., Torre M. Regulation of cellulases and xylanases form a derepressed mutant of Cellulomonas flavigena growing on sugar-can bagasse in continuous culture. Bioresource Technol. 2001;78:285–291. doi: 10.1016/s0960-8524(00)00181-4. [DOI] [PubMed] [Google Scholar]
  • 19.Srinivasan C., D’souza T.M., Boominathan K., Reddy C.A. Demonstration of laccase in the white-rot basidiomycete, Phanerochaete chrysosporium BKM-F1767. Appl Environ Microbiol. 1995;61:4274–4277. doi: 10.1128/aem.61.12.4274-4277.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Puniya A.K., Singh K. Biochemical changes during the solid substrate fermentation of wheat straw. Indian J Microbiol. 1995;35:211–215. [Google Scholar]
  • 21.Vijaya Ch., Singaracharya M.A. Cellulolytic and lignolytic enzymes produced during solid state fermentation of paddy straw by fungi. Indian J Microbiol. 2005;45:75–77. [Google Scholar]
  • 22.Higuchi T.Lignin biochemistry: biosynthesis and biodegradation Wood Sci Technol 19902423–63.10.1007/BF00225306 [Google Scholar]
  • 23.Ahlawat O.P., Ahlawat K., Dhar B.L. Influence of lignocellulolytic enzymes on substrate colonization and yield in monosporus isolates and parent strains of Volvariella volvacea. Indian J Microbiol. 2005;45:205–210. [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES