Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2007 Jul 8;47(2):144–152. doi: 10.1007/s12088-007-0028-4

Statistical optimization of alkaline xylanase production from Streptomyces violaceoruber under submerged fermentation using response surface methodology

S Khurana 1, M Kapoor 1, S Gupta 1, R C Kuhad 1,
PMCID: PMC3450106  PMID: 23100657

Abstract

Response surface methodology employing central composite design (CCD) was used to optimize fermentation medium for the production of cellulase-free, alkaline xylanase from Streptomyces violaceoruber under submerged fermentation. The design was employed by selecting wheat bran, peptone, beef extract, incubation time and agitation as model factors. A second-order quadratic model and response surface method showed that the optimum conditions for xylanase production (wheat bran 3.5 % (w/v), peptone 0.8 % (w/v), beef extract 0.8 % (w/v), incubation time 36 h and agitation 250 rpm) results in 3.0-fold improvement in alkaline xylanase production (1500.0 IUml−1) as compared to initial level (500.0 IUml−1) after 36 h of fermentation, whereas its value predicted by the quadratic model was 1347 IUml−1. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) value of 0.9718, ensuring a satisfactory adjustment of the quadratic model with the experimental data.

The economical and cellulase-free nature of xylanase would enhance its applicability in pulp and paper industry.

Keywords: Alkaline, CCD, RSM, Streptomyces violaceoruber, Xylanase

Full Text

The Full Text of this article is available as a PDF (295.5 KB).

References

  • 1.Beg Q.K., Kapoor M., Bhushan B., Hoondal G.S. Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol. 2001;56:326–338. doi: 10.1007/s002530100704. [DOI] [PubMed] [Google Scholar]
  • 2.Kuhad R.C., Singh A., Eriksson K.E.L. Microorganisms and enzymes involved in the degradation of plant fiber cell wall. Adv Biochem Eng Biotechnol. 1997;57:47–125. doi: 10.1007/BFb0102072. [DOI] [PubMed] [Google Scholar]
  • 3.Prade R.A. Xylanases: from biology to biotechnology. Biotech Genet Eng Rev. 1995;13:100–131. doi: 10.1080/02648725.1996.10647925. [DOI] [PubMed] [Google Scholar]
  • 4.Viikari L., Kantelinen A., Sundquist J., Linko M. Xylanase in bleaching: from an idea to the industry. FEMS Microbiol Rev. 1994;13:335–350. doi: 10.1111/j.1574-6976.1994.tb00053.x. [DOI] [Google Scholar]
  • 5.Bajpai P. Biological bleaching of pulps. Crit Rev Biotechnol. 2004;24:1–58. doi: 10.1080/07388550490465817. [DOI] [PubMed] [Google Scholar]
  • 6.Taneja K., Gupta S., Kuhad R.C. Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99. Biores Technol. 2002;85:39–42. doi: 10.1016/S0960-8524(02)00064-0. [DOI] [PubMed] [Google Scholar]
  • 7.Ninawe S., Kuhad R.C. Bleaching of wheat strawrich soda pulp with xylanase from a thermoalkalophilic Streptomyces cyaneus SN32. Biores Technol. 2005;97:2291–2295. doi: 10.1016/j.biortech.2005.10.035. [DOI] [PubMed] [Google Scholar]
  • 8.Wong K.K.Y., Saddler J.N. Trichode maxylanases, their properties and purification. Crit Rev Biotechnol. 1992;12:413–435. [Google Scholar]
  • 9.Kulkarni N., Shendye A., Rao M. Molecular and biotechnology aspects of xylanases. FEMS Microb Rev. 1999;23:411–456. doi: 10.1111/j.1574-6976.1999.tb00407.x. [DOI] [PubMed] [Google Scholar]
  • 10.Polizeli M.L.T.M., Rizzatti A.C.S., Monti R., Terenzi H.F., Jorge J.A., Amorim D.S. Xylanases from fungic properties and industrial applications. Appl Microbiol Biotechnol. 2005;67:577–591. doi: 10.1007/s00253-005-1904-7. [DOI] [PubMed] [Google Scholar]
  • 11.Lee H., Song M., Hang S. Optimizing bioconversion of deproteinated cheese whey to mycelia of Ganoderma lucidum. Proc Biochem. 2003;38:1685–1693. doi: 10.1016/S0032-9592(02)00259-5. [DOI] [Google Scholar]
  • 12.Jatinder K., Chadha B.S., Saini H.S. Optimization of culture conditions for production of cellulases and xylanases by Scytalidium thermophilum using Response Surface Methodology. W J Microbiol Biotechnol. 2006;22:169–176. doi: 10.1007/s11274-005-9015-2. [DOI] [Google Scholar]
  • 13.Chang Y.N., Huang J.C., Lee C.C., Shih I.L., Tzeng Y.M. Use of response surface methodology to optimize culture medium for production of lovastatin by Monascus ruber. Enzyme Microb Technol. 2002;30:889–894. doi: 10.1016/S0141-0229(02)00037-6. [DOI] [Google Scholar]
  • 14.Pandey A., Ashakumari L., Selvakumar P., Vijayalakshmi K.S. Influence of water activity on growth and activity of Aspergillus niger for glucoamylase production in solid state fermentation. W J Microbiol Biotechnol. 1994;10:485–486. doi: 10.1007/BF00144481. [DOI] [PubMed] [Google Scholar]
  • 15.Simunek J., Tishchenko G., Rozhetsky K., Bartonova H., Kopecny J., Hodrova B. Chitinolytic enzymes from Clostridium aminovalericum: activity screening and purification. Folia Microbiol. 2004;49:194–198. doi: 10.1007/BF02931401. [DOI] [PubMed] [Google Scholar]
  • 16.Beg Q.K., Saxena R.K., Gupta R. Kinetic constant determination for an alkaline protease from Bacillus mojavensis using response surface methodology. Biotechnol Bioeng. 2002;78:289–295. doi: 10.1002/bit.10203. [DOI] [PubMed] [Google Scholar]
  • 17.Reddy P.R.M., Ramesh B., Mrudula S., Reddy G., Seenayya G. Production of thermostable b-amylase by Clostridium thermosulfurogenes SV2 in solid state fementation: optimization of nutrient levels using response surface methodology. Proc Biochem. 2003;39:267–277. doi: 10.1016/S0032-9592(02)00193-0. [DOI] [Google Scholar]
  • 18.Box G.E.P., Draper N.R. Emperical model-building and response surfaces. New York: Wiley; 1987. [Google Scholar]
  • 19.Ikura Y., Horikoshi K. Stimulatory effect of certain amino acids on xylanase production by alkalophilic Bacillus sp. Agri Bio Chem. 1987;51:3143–3145. [Google Scholar]
  • 20.Page R.D.M. TREE VIEW: An application to display phylogenetic trees on personal computers. Computer Appl Biosci. 1996;10:1435–1441. doi: 10.1093/bioinformatics/12.4.357. [DOI] [PubMed] [Google Scholar]
  • 21.Miller G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31:426–428. doi: 10.1021/ac60147a030. [DOI] [Google Scholar]
  • 22.Haaland P.D. Statistical problem solving. In: Haaland P.D., editor. Experimental Design in Biotechnology. New York and Basel: Marcel Dekker, Inc; 1989. pp. 1–18. [Google Scholar]
  • 23.Morag E., Bayer E.A., Lamed R. Relationship of cellulosomal and non cellulosomal xylanases of Clostridium thermophilum to cellulose degrading enzymes. J Bacteriol. 1990;172:6098–6105. doi: 10.1128/jb.172.10.6098-6105.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Thygesen A., Thomson A.B., Schmidt A.S., Jorgensen H., Ahring B.K., Olsson L. Production of cellulose and hemicellulose degrading enzymes by filamentous fungi cultivated on wet oxidized wheat straw. Enzyme Microb Technol. 2003;32:606–615. doi: 10.1016/S0141-0229(03)00018-8. [DOI] [Google Scholar]
  • 25.Singh A., Abidi A.B., Darmawal N.S., Agarwal A.K. Influence of nutritional factors on cellulase production from natural lignocellulosic residues by Aspergillus niger. Agri Bio Res. 1991;7:19–27. [Google Scholar]
  • 26.Kuhad R.C., Manchanda M., Singh A. Optimization of xylanase production by a hyperxylanolytic mutant strain of Fusarium oxysporum. Proc Biochem. 1998;33:641–647. doi: 10.1016/S0032-9592(98)00025-9. [DOI] [Google Scholar]
  • 27.Gomes D.J., Gomes J., Steiner W. Factors influencing the induction of endo-xylanase by Thermoascus aurantiacus. J Biotechnol. 1994;33:87–94. doi: 10.1016/0168-1656(94)90101-5. [DOI] [Google Scholar]
  • 28.Gusek T.W., Johnson R.D., Tyn M.T., Kinsella J.E. Effect of agitational shear on growth and protease production by Thermomonospora fusca. Biotechnol Bioeng. 1991;37:371–374. doi: 10.1002/bit.260370411. [DOI] [PubMed] [Google Scholar]
  • 29.Palma M.B., Milagres A.M.F., Prata A.M.R., Mancilha I.M. Influence of aeration and agitation rate on the xylanase activity from Penicillium janthinellum. Proc Biochem. 1996;31:141–145. doi: 10.1016/0032-9592(95)00042-9. [DOI] [Google Scholar]
  • 30.Kohli U., Nigam P., Singh D., Chaudhary K. Thermostable, alkalophilic and cellulase free xylanase produced by Thermoactinomyces thalophilus subgroup C. Enzyme Microb Technol. 2001;28:606–610. doi: 10.1016/S0141-0229(01)00320-9. [DOI] [PubMed] [Google Scholar]
  • 31.Senthilkumar S.R., Ashokkumar B. K., Raj C., Gunasekaran P. Optimization of medium composition for alkalistable xylanase production by Aspergillus fischeri Fxn 1 in solid-state fermentation using central composite rotary design. Biores Technol. 2005;96:1380–1386. doi: 10.1016/j.biortech.2004.11.005. [DOI] [PubMed] [Google Scholar]
  • 32.Bocchini D.A., Alves-Prado H.F., Baida L.C., Roberto I.C., Gomes E., Silva R. Optimization of xylanase production by Bacillus circulans D1 in submerged fermentation using response surface methodology. Proc Biochem. 2002;38:727–731. doi: 10.1016/S0032-9592(02)00207-8. [DOI] [Google Scholar]
  • 33.Haltrich D., Preiss M., Steiner W. Optimization of a culture medium for increased xylanase production by a wild strain of Schizophyllum commune. Enzyme Microb Technol. 1993;15:854–860. doi: 10.1016/0141-0229(93)90097-L. [DOI] [Google Scholar]
  • 34.Purkarthofer H., Sinner M., Steiner W. Cellulase-free xylanase from Thermomyces lanuginosus: optimization of production in submerged and solid-state culture. Enzyme Microb Technol. 1993;15:677–682. doi: 10.1016/0141-0229(93)90068-D. [DOI] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES