Abstract
The ITS region sequence of a phosphate-solubilizing fungus isolated from the rhizosphere of tea growing in Kangra valley of Himachal Pradesh showed 96% identity with Discosia sp. strain HKUCC 6626 ITS 1, 5.8S rRNA gene and ITS 2 complete sequence, and 28S rRNA gene partial sequence. The fungus exhibited the multiple plant growth promoting attributes of solubilization of inorganic phosphate substrates, production of phytase and siderophores, and biosynthesis of indole acetic acid (IAA)-like auxins. The fungal inoculum significantly increased the root length, shoot length and dry matter in the test plants of maize, pea and chickpea over the uninoculated control under the controlled environment. The plant growth promoting attributes have not been previously studied for the fungus. The fungal strain with its multiple plant growth promoting activities appears attractive towards the development of microbial inoculants.
Keywords: Discosia sp., ITS region, Plant growth promotion, Tea
Full Text
The Full Text of this article is available as a PDF (515.1 KB).
References
- 1.Verma D.P., Palani N. Handbook of tea culture. India: UPASI Tea Research Institute; 1997. Manuring of tea in South India (revised recommendations) p. 33. [Google Scholar]
- 2.Dey R., Pal K.K., Bhatt D.M., Chauhan S.M. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth promoting rhizobacteria. Microbiol Res. 2004;159:371–394. doi: 10.1016/j.micres.2004.08.004. [DOI] [PubMed] [Google Scholar]
- 3.Shin W, Ryu J, Kim Y, Yang J, Madhaiyan M and Sa T (2006) Phosphate solubilization and growth promotion of maize (Zea mays L.) by the rhizosphere soil fungus Penicillium oxalicum. 18th World Conference of Soil Science, July 9–15, 2006, Philadelphia, Pennsylvania, USA
- 4.Metting F.B. Structure and physiological ecology of soil microbial communities. In: Metting F.B., editor. Soil microbial ecology, application and environmental management. New York: Marcel Dekker; 1993. pp. 3–25. [Google Scholar]
- 5.Ahmad N., Jha K.K. Solubilization of rock phosphate by microorganisms isolated from Bihar soils. J Gen Appl Microbiol. 1968;14:89–95. doi: 10.2323/jgam.14.89. [DOI] [Google Scholar]
- 6.Wolczanska A., Kozlowska M., Piatek M., Mulenko W. Survey of the genus Discosia (anamorphic fungi) in Poland. Polish Bot J. 2004;49(1):55–61. [Google Scholar]
- 7.Gupta R., Singal R., Shanker A., Kuhad R.C., Saxena R.K. A modified plate assay for screening phosphate-solubilizing microorganisms. J Gen App Microbiol. 1994;40:255–260. doi: 10.2323/jgam.40.255. [DOI] [Google Scholar]
- 8.Barnett H.L., Hunter B.B. Illustrated genera of imperfect fungi. Minneapolis, Minnesota: Burgess Publishing Company; 1972. [Google Scholar]
- 9.Subramanian C.V., Chandra-Reddy K.R. The genus Discosia. I. Taxonomy. Kavaka. 1974;2:57–89. [Google Scholar]
- 10.Vyas P., Rahi P., Chauhan A., Gulati A. Phosphate solubilization potential and stress tolerance of Eupenicillium parvum from tea soil. Mycol Res. 2007;111:931–938. doi: 10.1016/j.mycres.2007.06.003. [DOI] [PubMed] [Google Scholar]
- 11.Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Chenna R., Sugawara H., Koike T., Lopez R., Gibson T.J., Higgins D.G., Thompson J.D. Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res. 2003;31(13):3497–3500. doi: 10.1093/nar/gkg500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111–120. doi: 10.1007/BF01731581. [DOI] [PubMed] [Google Scholar]
- 14.Tandon H.L.S., Cescas M.P., Tyner E.H. An acid-free vanadate-molybdate reagents for the determination of total phosphorus in soils. Soil Sci Soc Am Proc. 1968;32:48–51. doi: 10.2136/sssaj1968.03615995003200010012x. [DOI] [Google Scholar]
- 15.Howson S.G., Davis R.P. Production of phytate hydrolyzing enzyme by some fungi. Enzyme Microb Technol. 1983;5:377–382. doi: 10.1016/0141-0229(83)90012-1. [DOI] [Google Scholar]
- 16.Loper J.E., Scroth M.N. Influence of bacterial sources on indole-3 acetic acid on root elongation of sugarbeet. Phytopathol. 1986;76:386–389. doi: 10.1094/Phyto-76-386. [DOI] [Google Scholar]
- 17.Chung K.R., Shilts T., Erturk U., Timmer L.W., Uneg P.P. Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol Lett. 2003;226:23–30. doi: 10.1016/S0378-1097(03)00605-0. [DOI] [PubMed] [Google Scholar]
- 18.Payne S.M. Detection, isolation and characterization of siderophores. Methods Enzymol. 1994;235:329–344. doi: 10.1016/0076-6879(94)35151-1. [DOI] [PubMed] [Google Scholar]
- 19.Schwyn B., Neilands J.B. Universal chemical assay for the detection and determination of siderophores. Anal Biochem. 1987;160:47–56. doi: 10.1016/0003-2697(87)90612-9. [DOI] [PubMed] [Google Scholar]
- 20.Hoagland DR and Arnon DI (1950) The water-culture method for growing plants without soil. Circ 347
- 21.Jeewon R., Liew E.C., Hyde K.D. Phylogenetic relationships of Pestalotiopsis and allied genera inferred from ribosomal DNA sequences and morphological characters. Mol Phylogenet Evol. 2002;25(3):378–392. doi: 10.1016/S1055-7903(02)00422-0. [DOI] [PubMed] [Google Scholar]
- 22.Banik S., Dey B.K. Phosphate solubilization potentiality of the microorganisms capable of utilizing AlPO4 as sole phosphate source. Zentrlbl Bakteriol. 1983;138(1):17–23. [PubMed] [Google Scholar]
- 23.Narsian V., Thakkar J., Patel H.H. Isolation and screening of phosphate solubilizing fungi. Indian J Microbiol. 1994;32(2):113–118. [Google Scholar]
- 24.Nahas E. Factors determining rock phosphate solubilization by microorganisms. W J Microbiol Biotechnol. 1996;12:567–572. doi: 10.1007/BF00327716. [DOI] [PubMed] [Google Scholar]
- 25.Pradhan N., Sukla L.B. Solubilization of inorganic phosphates by fungi isolated from agriculture soil. African J Biotechnol. 2005;5(10):850–854. [Google Scholar]
- 26.Asea P.E.A., Kucey R.M.N., Stewart J.W.B. Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol Biochem. 1988;20:459–464. doi: 10.1016/0038-0717(88)90058-2. [DOI] [Google Scholar]
- 27.Chadha B.S., Gulati H.K., Minhas M., Saini H.S. Phytase production by the thermophillic fungus Rhizomucor pusillus. W J Microbiol Biotechnol. 2004;20:105–109. doi: 10.1023/B:WIBI.0000013319.13348.0a. [DOI] [Google Scholar]
- 28.Rodriguez H., Fraga R., Gonzalez T., Bashan Y. Genetics of phosphate solubilization and its potential applications for improving plant growth promoting bacteria. Plant Soil. 2006;287:15–21. doi: 10.1007/s11104-006-9056-9. [DOI] [Google Scholar]
- 29.Othieno C.O. Effect of prunings removal on nutrients uptake and yield of tea. Tea. 1981;2:20–25. [Google Scholar]
- 30.Osono T., Takeda H. Decomposing ability of interior and surface fungal colonizers of beech leaves with reference to lignin decomposition. Eur J Soil Biol. 1999;35(2):51–56. doi: 10.1016/S1164-5563(99)00112-0. [DOI] [Google Scholar]
- 31.Sarwar M., Frankenberger W.T., Jr Tryptophan dependent biosynthesis of auxins in soil. Plant Soil. 1994;160:97–104. doi: 10.1007/BF00150350. [DOI] [Google Scholar]
- 32.Kravchenko L.V., Azarova T.S., Makarova N.M., Tikhonovich I.A. The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Micriobiol. 2004;73(2):156–158. doi: 10.1023/B:MICI.0000023982.76684.9d. [DOI] [PubMed] [Google Scholar]
- 33.Anke H., Kinn J., Bergquist K.E., Sterner O. Production of siderophores by strains of the genus Trichoderma. Biometals. 2005;4(3):176–180. [Google Scholar]
- 34.Harman G.E., Bjorkman T. Potential and existing uses of Trichoderma and Gliocladium for plant disease control and plant growth enhancement. In: Harman G.E., Kubicek C.P., editors. Trichoderma and Gliocladium. Taylor and Francis, London: United Kingdom; 1998. pp. 229–265. [Google Scholar]
- 35.Qureshi A.A., Narayanasamy G. Direct effect of rock phosphates and phosphate solubilizers on soybean growth in a typic ustochrept. J Indian Soc Soil Sci. 1999;47:475–478. [Google Scholar]
- 36.Wakelin S.A., Ryder M.N., Warren R.A. Effect of soil properties on growth promotion of wheat by Penicillium radicum. Aust J Soil Res. 2004;42(8):897–904. doi: 10.1071/SR04035. [DOI] [Google Scholar]
- 37.Whitelaw M.A. Growth promotion of plants inoculated with phosphate solubilizing fungi. Adv Agron. 2000;69:99–151. doi: 10.1016/S0065-2113(08)60948-7. [DOI] [Google Scholar]