Abstract
Laccases (benzenediol:oxygen oxidoreductase, EC 1.10.3.2) are a diverse group of multicopper oxidases that catalyze the oxidation of a variety of aromatic compounds. Here we present evidence for distribution of laccases among archaea and their probable functions. Putative laccase genes have been found in different archaeal groups that might have branched off early during evolution, e.g. Haloarcula marismortui ATCC 43049, Natronomonas pharaonis DSM2160, Pyrobaculum aerophilum IM2, Candidatus Nitrosopumilus maritimus SCM1, Halorubrum lacusprofundi ATCC 49239. Most of the archaeal multicopper oxidases reported here are of Type 1 and Type 2 whereas type 3 copper-binding domain could be found in Pyrobaculum aerophilum IM2 and Halorubrum lacusprofundi ATCC49239. An analysis of the genome sequence database revealed the presence of novel types of two-domain laccases in archaea. ed using this method. CyMVin the positive samples of Phalaenopsis sp. and Arachnis sp. was confirmed by DNA sequencing and cp gene homeology blast. The results showed that CyMV extracted from the leaves of orchid in Hangzhou, Zhejiang Province, China, could be derived from Kunming city (KM), Yunnan Province, China. This method characterized by high sensitivity, specificity, and precision is suitable for early diagnosis and quantitative detection of CyMV.
Keywords: Archaea, Multicopper oxidase, Laccase, Genome, Cluster of orthologus groups
Full Text
The Full Text of this article is available as a PDF (646.4 KB).
References
- 1.Keilin D., Mann T. Laccase, a blue copper-protein oxidase from the latex of Rhus succedanea. Nature. 1939;143:23–24. doi: 10.1038/143023b0. [DOI] [Google Scholar]
- 2.Kawai S., Umezawa T., Shimada M., Higushi T. Aromatic ring cleavage of 4,6-di(tert-butyl) guiacol, a phenolic lignin model compound, by laccase of Coriolus versicolor. FEBS Lett. 1988;236:309–311. doi: 10.1016/0014-5793(88)80043-7. [DOI] [PubMed] [Google Scholar]
- 3.Kuhad R.C., Singh A., Eriksson K.-E. Microorganism and their enzymes involved in the degradation of plant fibre cell walls. In: Eriksson K. E., editor. Advances Biochem. Eng. Biotechnol. Germany: Springer-Verlag; 1997. pp. 47–125. [DOI] [PubMed] [Google Scholar]
- 4.Sharma K.K., Kuhad R.C. Laccase: enzyme revisited and functions redefined. Indian J Microbiol. 2008;48:309–316. doi: 10.1007/s12088-008-0028-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Solomon E.I., Sundaram U.M., Machonkin T.E. Multi-copper oxidases and oxygenases. Chem Rev. 1996;96:2563–2605. doi: 10.1021/cr950046o. [DOI] [PubMed] [Google Scholar]
- 6.Solomon E.I., Machonkin T.E., Sundaram M. Spectroscopy of multi-copper oxidases. In: Messerschmidt A., editor. Multicopper oxidases. Singapore: World Scientific Publishing Co.; 1997. pp. 103–127. [Google Scholar]
- 7.Mayer A., Staples R. Laccase: new functions for an old enzyme. Phytochem. 2002;60:551–565. doi: 10.1016/S0031-9422(02)00171-1. [DOI] [PubMed] [Google Scholar]
- 8.Thurston C.F. The structure and function of fungal laccases. Microbiol. 1994;140:19–26. doi: 10.1099/13500872-140-1-19. [DOI] [Google Scholar]
- 9.Zavarzina A.G., Zavarzin A.A. Laccase and tyrosinase activities in lichens. Microbiol. 2006;75:630–641. [PubMed] [Google Scholar]
- 10.Alexandre G., Zulin I.B. Laccases are widespread in bacteria. Trends Biotechnol. 2000;18:41–42. doi: 10.1016/S0167-7799(99)01406-7. [DOI] [PubMed] [Google Scholar]
- 11.Sharma P., Goel R., Capalash N. Bacterial laccases. World J Microbiol Biotechnol. 2007;23:823–832. doi: 10.1007/s11274-006-9305-3. [DOI] [Google Scholar]
- 12.Givaudan A., Effosse A., Faure D., Potier P., Bouillant M.- L., Bally R. Polyphenol oxidase in Azospirillum lipoferum isolated from rice rhizosphere: evidence for laccase activity in non-motile strains of Azospirillum lipoferum. FEMS Microbiol. Lett. 1993;108:205–210. doi: 10.1111/j.1574-6968.1993.tb06100.x. [DOI] [Google Scholar]
- 13.Rosconi F., Fraguas L.F., Martinez-Drets G., Castro-Sowinski S. Purification and characterization of a periplasmic laccase produced by Sinorhizobium meliloti. Enzyme and Microbial Technol. 2005;36:800–807. doi: 10.1016/j.enzmictec.2005.01.003. [DOI] [Google Scholar]
- 14.Jensen L.J., Skovgaard M., Brunak S. Prediction of novel archaeal enzymes from sequence-derived features. Protein Sci. 2002;11:2894–2898. doi: 10.1110/ps.0225102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Markowitz VM, Szeto EK Palaniappan et al. (2008) The integrated microbial genomes (IMG) system in 2007: data content and analysis tool extensions. Nucleic Acid Res 36 [DOI] [PMC free article] [PubMed]
- 16.Nakamura K., Kawabata T., Yura K., Go N. Novel type of two-domain multi-copper oxidase: possible missing links in the evolution. FEBS Letter. 2003;553:239–244. doi: 10.1016/S0014-5793(03)01000-7. [DOI] [PubMed] [Google Scholar]
- 17.Natale D.A., Shankavaram U.T., Galperin M.Y., Wolf Y.I., Aravind L., Koonin E.V. Towards understanding the first genome sequence of a crenarchaeon by genome annotation using cluster of orthologous groups of proteins (COGs) Genome Biol. 2000;1:0009.1–0009.19. doi: 10.1186/gb-2000-1-5-research0009. [DOI] [PMC free article] [PubMed] [Google Scholar]