Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2009 Apr 13;49(2):114–119. doi: 10.1007/s12088-009-0023-z

Beneficial interactions between insects and gut bacteria

R Rajagopal 1,
PMCID: PMC3450145  PMID: 23100759

Abstract

Insects are amongst the most successful of animals, both in terms of diversity and in colonizing all ecological niches. Recent studies have highlighted the benefi ciary roles that bacteria play in the success and establishment of insects. By adopting techniques like 16S rRNA sequencing we are now in a position to understand the diversity of bacteria present in insect guts. It has been shown that some of these bacteria, like Wolbachia and Cardinium are involved in manipulating insect populations and distorting their sex ratio. Attempts have been made to culture these bacteria in insect cell lines, as they are recalcitrant to culture under normal microbiological conditions. The diversity of bacteria associated with insects and the functional role played by them in the insect is discussed below.

Keywords: Insect, Bacteria, Endosymbionts, Commensal

Full Text

The Full Text of this article is available as a PDF (594.9 KB).

References

  • 1.Sonnenburg J.L., Angenent L.T., Gordon J.I. Getting a grip on things: how do communities of bacterial symbionts become established in our intestine. Nat Immunology. 2004;5:569–573. doi: 10.1038/ni1079. [DOI] [PubMed] [Google Scholar]
  • 2.Micchelli C.A., Perrimon N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature. 2006;439:475–479. doi: 10.1038/nature04371. [DOI] [PubMed] [Google Scholar]
  • 3.Illa-Bochaca I., Montuenga L.M. The regenerative nidi of the locust midgut as a model to study epithelial cell differentiation from stem cells. J Experiment Biol. 2006;209:2215–2223. doi: 10.1242/jeb.02249. [DOI] [PubMed] [Google Scholar]
  • 4.Adams M.D. The genome sequence of Drosophila melanogaster. Science. 2000;287:2185–2195. doi: 10.1126/science.287.5461.2185. [DOI] [PubMed] [Google Scholar]
  • 5.Lederberg L. Infectious History. Science. 2000;288:287–293. doi: 10.1126/science.288.5464.287. [DOI] [PubMed] [Google Scholar]
  • 6.Berenbaum M.R., Eisner T. Bugs’ bugs. Science. 2008;322:52–53. doi: 10.1126/science.1164873. [DOI] [PubMed] [Google Scholar]
  • 7.Buchner P. Endosymbiosis of animals with plant microorganisms. New York: Wiley; 1965. p. 909. [Google Scholar]
  • 8.Dasch G.A., Weiss E., Chaang K.P. Endosymbionts of insects. In: Krieg N.R., Holt J.G., editors. Bergey’s manual of systematic bacteriology. Baltimore: Williamns and Wilkins; 1984. pp. 811–813. [Google Scholar]
  • 9.Riesenfeld C.S., Schloss P.D., Handelsman J. Metagenomics: Genomic analysis of microbial communities. Ann Rev Gen. 2004;38:525–552. doi: 10.1146/annurev.genet.38.072902.091216. [DOI] [PubMed] [Google Scholar]
  • 10.Ward D.M., Weller R., Bateson M.M. 16S rRNA reveal numerous uncultured microorganisms in a natural community. Nature. 1990;345:63–65. doi: 10.1038/345063a0. [DOI] [PubMed] [Google Scholar]
  • 11.O’Neill S.L., Giordano R., Colbert A.M.E., Karr T.L., Robertson H.M. 16S rRNA phylogenetic analysis of the bacterial endosymbiontsassociated with cytoplasmic instability in insects. Proc Natl Acad Sci USA. 1992;89:2699–2702. doi: 10.1073/pnas.89.7.2699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Clark M.A., Baumann L., Munson M.A., Baumann P., Campbell B.C., Duffins J.E., Osborne L.S., Moran N.A. The eubacterial endosymbionts of whitefl ies (Homoptera: Aleyrodidae) constitute a major lineage distinct from the endosymbionts of aphids and mealybugs. Curr Microbiol. 1992;5:119–123. doi: 10.1007/BF01570970. [DOI] [Google Scholar]
  • 13.Thimm T., Hoffmann A., Borkott H., Munch J.C., Tebbe C.C. The gut of the soil microarthropod Folsomia candida (Collembola) is a frequently changeable but selective habitat and a vector for microorganisms. Appl Environ Microbiol. 1998;64:2660–2669. doi: 10.1128/aem.64.7.2660-2669.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Hoffmann A., Thimm T., Droge M., Moore E.R.B., Munch J.C., Tebbe C.C. Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida (Collembola) Appl Environ Microbiol. 1998;64:2652–2659. doi: 10.1128/aem.64.7.2652-2659.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Paster B.J., Dewhirst F.E., Cooke S.M., Fussing V., Poulsen L.K., Breznak J.A. Phylogeny of not yet-cultured spirochetes from termite guts. Appl Environ Microbiol. 1996;62:347–352. doi: 10.1128/aem.62.2.347-352.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Egert M., Stingl U., Bruun L.D., Pommerenke B., Brune A., Friedrich M.W. Structure and topology of microbial communities in the major gut compartments of Melolontha melolontha larvae (Coleoptera: Scarabaeidae) Appl Environ Microbiol. 2005;71:4556–4566. doi: 10.1128/AEM.71.8.4556-4566.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Lemke T., Stingl U., Egert M., Friedrich M.W., Brune A. Physicochemical conditions and microbial activities in the highly alkaline gut of the humus-feeding larva of Pachnoda ephippiata (Coleoptera: Scarabaeidae) Appl Environ Microbiol. 2003;69:6650–6658. doi: 10.1128/AEM.69.11.6650-6658.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Corby-Harris V., Pontaroli A.C., Shimkets L.J., Bennetzen J.L., Habel K.E., Promislow D.E.L. Geographical distribution and diversity of bacteria associated with natural populations of Drosophila melanogaster. Appl Environ Microbiol. 2007;73:3470–3479. doi: 10.1128/AEM.02120-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Behar A., Jurkevitch E., Yuval B. Bringing back the fruit into fruit fly-bacteria interactions. Mol Ecology. 2008;17:1375–1386. doi: 10.1111/j.1365-294X.2008.03674.x. [DOI] [PubMed] [Google Scholar]
  • 20.Broderick N.A., Raffa K.F., Goodman R.M., Handelsman J. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture independent methods. Appl Env Microbiol. 2004;70:293–300. doi: 10.1128/AEM.70.1.293-300.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.James C. Int. Serv. Acquis. Agro-Biotech Appl. Ithaca, New York, USA: ISAAA; 2006. Global Status of Commercialized Biotech/GM Crops: 2006. [Google Scholar]
  • 22.Broderick N.A., Raffa K.F., Handelsman J. Midgut bacteria required for Bacillus thuringiensis. Proc Natl Acad Sci USA. 2006;103:15196–15199. doi: 10.1073/pnas.0604865103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Santo Domingo J.W., Kaufman M.G., Klug M.J., Holben W.E., Harris D., Tiedje J.M. Influence of diet on the structure and function of the bacterial hindgut community of crickets. Mol Ecol. 1998;7:761–767. doi: 10.1046/j.1365-294x.1998.00390.x. [DOI] [Google Scholar]
  • 24.Gijzen H.J., Vanderdrift C., Barugahare M., Opdencamp H.J.M. Effect of host diet and hindgut microbial composition on cellulolytic activity in the hindgut of the American cockroach, Periplaneta americana. Appl Environ Microbiol. 1994;60:1822–1826. doi: 10.1128/aem.60.6.1822-1826.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Tayasu I., Sugimoto A., Wada E., Abe T. Xylophagous termites depending on atmospheric nitrogen. Naturwissenschaften. 1994;81:229–231. [Google Scholar]
  • 26.Douglas A.E. Phloem-sap feeding by animals: problems and solutions. J Exp Botany. 2006;57:747–754. doi: 10.1093/jxb/erj067. [DOI] [PubMed] [Google Scholar]
  • 27.Tamas I., Klasson L., Canback B., Naslund A.K., Eriksson A.S., Wernegreen J.J., Sandstrom J.P., Moran N.A., Andersson S.G. 50 million years of genomic stasis in endosymbiotic bacteria. Science. 2002;296:2376–2379. doi: 10.1126/science.1071278. [DOI] [PubMed] [Google Scholar]
  • 28.Dale C., Moran N.A. Molecular interactions between bacterial symbionts and their hosts. Cell. 2006;126:453–465. doi: 10.1016/j.cell.2006.07.014. [DOI] [PubMed] [Google Scholar]
  • 29.Akman L., Yamashita A., Watanabe H., Oshima K., Shiba T., Hattori M., Aksoy S. Genome sequence of the endocellular obligate symbiont of tsetse flies, Wigglesworthia glossinidia. Nat Genet. 2002;32:402–407. doi: 10.1038/ng986. [DOI] [PubMed] [Google Scholar]
  • 30.Dillon R.J., Charnley A.K. Chemical barriers to gut infection in the desert locust-in vivo production of antimicrobial phenols associated with the bacterium Pantoea agglomerans. J Invertebr Pathol. 1995;66:72–75. doi: 10.1006/jipa.1995.1063. [DOI] [Google Scholar]
  • 31.Dillon R.J., Charnley A.K. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol. 2002;153:503–509. doi: 10.1016/S0923-2508(02)01361-X. [DOI] [PubMed] [Google Scholar]
  • 32.Kodama R., Nakasuji Y. Further studies on the pathogenic mechanism of bacterial diseases in gnotobiotic silkworm larvae. IFO Res Comm. 1971;5:1–9. [Google Scholar]
  • 33.Pinheiro V.B., Ellar D.J. How to kill a mocking bug? Cell Microbiol. 2006;8:545–557. doi: 10.1111/j.1462-5822.2006.00693.x. [DOI] [PubMed] [Google Scholar]
  • 34.Ha E.M., Oh C.T., Bae Y.S., Lee W.J. A direct role for dual oxidase in Drosophila gut immunity. Science. 2005;310:848. doi: 10.1126/science.1117311. [DOI] [PubMed] [Google Scholar]
  • 35.Ryu J.H., Kim S.H., Lee H.Y., Bai J.Y., Nam Y.D., Bae J.W., Lee D.G., Shin S.C., Ha E.M., Lee W.J. Innate immune homeostasis by the homeobox gene caudal and commensalgut mutualism in Drosophila. Science. 2008;319:777–78. doi: 10.1126/science.1149357. [DOI] [PubMed] [Google Scholar]
  • 36.Oliver K.M., Moran N.A., Hunter M.S. Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Nat Acad Sci. 2005;102:12795–12800. doi: 10.1073/pnas.0506131102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Russel J.A., Moran N.A. Costs and benefits of symbionts association in aphids: variation among symbionts and across temperatures. Proc R Soc B. 2006;273:603–610. doi: 10.1098/rspb.2005.3348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Baumann P., Baumann L., Clark M.A. Levels of Buchnera aphidicola chaperonin GroEL during growth of the aphid Schizaphis graminum. Curr Microbiol. 1996;32:279–285. doi: 10.1007/s002849900050. [DOI] [Google Scholar]
  • 39.Fares M.A., Ruiz-Gonzalez M.X., Moya A., Elena S.F., Barrio E. Endosymbiotic bacteria: GroEL buffers against deleterious mutations. Nature. 2002;417:398. doi: 10.1038/417398a. [DOI] [PubMed] [Google Scholar]
  • 40.Power A.G. Insect transmission of plant viruses: a constraint on virus variability. Current Opinion in Plant Biology. 2000;3:336–340. doi: 10.1016/S1369-5266(00)00090-X. [DOI] [PubMed] [Google Scholar]
  • 41.Morin S., Ghanim M., Zeidan M., Czosnek H., Verbeek M., Heuvel J.F. A GroEL homologue from endosymbiotic bacteria of the whitefly Bemisia tabaci is implicated in the circulative transmission of tomato yellow leaf curl virus. Virology. 1999;256:75–84. doi: 10.1006/viro.1999.9631. [DOI] [PubMed] [Google Scholar]
  • 42.Hogenhout S.A., WF, Verbeek M., Goldbach R.W., Heuvel J.F. Identifying the determinants in the equatorial domain of Buchnera GroEL implicated in binding potato leafroll virus. J Virol. 2000;74:4541–4548. doi: 10.1128/JVI.74.10.4541-4548.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.McGraw E.A., O’Neill S.L. Wolbachia pipientis: intracellular infection and pathogenesis in Drosophila. Curr Opin Microbiol. 2004;7:7–70. doi: 10.1016/j.mib.2003.12.003. [DOI] [PubMed] [Google Scholar]
  • 44.Hoerauf A., Rao R.U. Issues in Infectious Diseases. Basel: Karger; 2007. Wolbachia: a bugs life in another bug. [Google Scholar]
  • 45.Zchori-Fein E., Perlman S.J. Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecology. 2004;13:2009–2016. doi: 10.1111/j.1365-294X.2004.02203.x. [DOI] [PubMed] [Google Scholar]
  • 46.Perlman S.J., Kelly S.E., Hunter M.S. Population biology of cytoplasmic incompatibility: maintenance and spread of Cardinium symbionts in a parasitic wasp. Genetics. 2008;178:1003–1011. doi: 10.1534/genetics.107.083071. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Panagiotis I., Bourtzis K. Insect symbionts and applications: The paradigm of cytoplasmic incompatibility-inducing Wolbachia. Entomol Res. 2007;37:125–138. doi: 10.1111/j.1748-5967.2007.00102.x. [DOI] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES