Skip to main content
Cytotechnology logoLink to Cytotechnology
. 2004 Jul;45(3):101–106. doi: 10.1007/s10616-004-2551-z

BHK 21 C13 cells for Aujeszky’s disease virus production using the multiple harvest process

Višnja Gaurina Srček 1, Stanislav Čajavec 2, Davor Sladić 3, Zlatko Kniewald 1,
PMCID: PMC3450169  PMID: 19003247

Abstract

Production of Aujeszky’s disease virus (ADV) from BHK 21 C13 suspension cells using a simple harvest and multiple harvest process mode was examined. We studied growth kinetics of BHK 21 C31 cells in 750 ml spinner flask containing 500 ml of culture medium. In the simple harvest process of ADV production, 425 ml of virus harvest was obtained with a virus titer of 106.4 TCID50 ml−1 which corresponds to 10,676 doses of vaccine. The multiple harvest process resulted in 850 ml of virus harvest with a virus titer of 106.5 TCID50 ml−1 corresponding to 26,877 AD vaccine doses. In conclusion, the multiple harvest process mode using BHK 21 C13 can be considered as a favorable process to produce ADV.

Keywords: Aujeszky’s disease virus, Baby hamster kidney cells, Biomass production, Multiple harvest process, Spinner flask

Full Text

The Full Text of this article is available as a PDF (206.1 KB).

Glossary

ADV

Aujeszky’s disease virus

AD

Aujeszky’s disease

BHK 21

Baby Hamster Kidney cells

TCID50

Tissue Culture Infectious Dose 50

References

  1. Afsahar A., Dulac G.C. Immunoperoxidase plaque staining for the detection of pseudorabies virus. Can. J. Vet. Res. 1986;50:118–119. [PMC free article] [PubMed] [Google Scholar]
  2. Baijot B., Duchene M., Stephenne J. Production of Aujeszky vaccine by the microcarrier technology “From the ampoule to the 500 l fermentor”. Develop. Biol. Stand. 1987;66:523–530. [PubMed] [Google Scholar]
  3. Butler M., Spier R.E. The effects of glutamine utilization and ammonia production on the growth of BHK cells in microcarriers culture. J. Biotechnol. 1984;1:187–196. doi: 10.1016/0168-1656(84)90004-X. [DOI] [Google Scholar]
  4. Cruz H.J., Freitas C.M., Alves P.M., Moreira J.L., Carrondo M.J.T. Effects of ammonia and lactate on growthmetabolismand productivity of BHK cells. Enz. Microb. Technol. 2000;27:43–52. doi: 10.1016/S0141-0229(00)00151-4. [DOI] [PubMed] [Google Scholar]
  5. Gümüşdereliouğlu M., Aslankaraoglu E., Gürhan S.I. Rabies vaccine production in non-woven polyester fabric (NWPF) packed-bed reactors. Biotechnol. Appl. Biochem. 2001;33:167–172. doi: 10.1042/BA20000052. [DOI] [PubMed] [Google Scholar]
  6. Kallel H., Jouini A., Majoul S., Rourou S. Evaluation of various serum and animal protein free media for the production of veterinary rabies vaccine in BHK-21 cells. J. Biotechnol. 2002;95:195–204. doi: 10.1016/S0168-1656(02)00009-3. [DOI] [PubMed] [Google Scholar]
  7. Lojkić M., Markuš-Cizelj L.J., Čajavec S., Zidar V., Gojšić S. Investigation on safety of attenuated Aujeszky’s disease vaccine (Ay-Vak Bartha-6) in piglets and sows. Praxis veterinaria. 1992;40:315–322. [Google Scholar]
  8. Markuš-Cizelj L.J., Lojkić M., Čajavec S. Immunogenicity of an inactivated oil gI negative Aujeszky’s disease vaccine (Davak gE-) Praxis veterinaria. 1991;39:27–35. [Google Scholar]
  9. Merten O.-W., Hannoun C., Manuguerra J.-C., Ventre F., Petres S. Production of influenza virus in cell cultures for vaccine preparation. In: Cohen S., Shafferman A., editors. Novel Strategies in Design and Production of Vaccines. New York, USA: Plenum Press; 1996. pp. 141–151. [DOI] [PubMed] [Google Scholar]
  10. Merten O.-W., Wu R., Couvé E., Crainic R. Evaluation of the serum-free medium MDSS2 for the production of poliovirus on vero cells in bioreactors. Cytotechnology. 1997;25:35–44. doi: 10.1023/A:1007999313566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Merten O.-W., Kallel H., Manuguerra J.-C., Tardy-Panit M., Crainic R., Delpeyroux F., der Werf S., Perrin P. The new medium MDSS2Nfree of any animal protein supports cell growth and production of various viruses. Cytotechnology. 1999;30:191–201. doi: 10.1023/A:1008021317639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Mettenleiter T.C. Aujeszky’s disease (pseudorabies) virus: the virus and molecular pathogenesis-state of the artJune 1999. Vet. Res. 2000;31:99–115. doi: 10.1051/vetres:2000110. [DOI] [PubMed] [Google Scholar]
  13. Perrin P., Madhusudana S., Gontier-Jallet C., Petres S., Tordo N., Merten O.W. An experimental rabies vaccine produced with a new BHK-21 suspension cell culture process: use of serum-free medium and perfusion-reactor system. Vaccine. 1995;13:1244–1250. doi: 10.1016/0264-410X(94)00022-F. [DOI] [PubMed] [Google Scholar]
  14. Puentes E., Eiras A., Cancio E., Nores M.V., Aquilera A., Seoane R., Regueiro B.J. Comparison of the protective efficacy of Aujeszky’s disease (pseudorabies) virus glycoproteins obtained from different sources. Vet. Microbiol. 1993;35(1–2):45–59. doi: 10.1016/0378-1135(93)90115-N. [DOI] [PubMed] [Google Scholar]
  15. Radlett P.J., Pay T.W.F., Garland A.J.M. The use of BHK suspension cells for the commercial production of foot and mouth disease vaccines over a twenty year period. Develop. Biol. Standard. 1985;60:163–170. [PubMed] [Google Scholar]
  16. Zuckermann F.A. Aujeszky’s disease virus: opportunities and challenges. Vet. Res. 2000;31:121–131. doi: 10.1051/vetres:2000111. [DOI] [PubMed] [Google Scholar]

Articles from Cytotechnology are provided here courtesy of Springer Science+Business Media B.V.

RESOURCES