Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Mar;81(6):1839–1843. doi: 10.1073/pnas.81.6.1839

Metabolism of apolipoproteins B-48 and B-100 of triglyceride-rich lipoproteins in normal and lipoprotein lipase-deficient humans.

A F Stalenhoef, M J Malloy, J P Kane, R J Havel
PMCID: PMC345017  PMID: 6584917

Abstract

The metabolism of apolipoproteins B-48 and B-100 (apo B-48 and B-100) in large triglyceride-rich lipoproteins (300 to 1500 A in diameter) has been compared in three normal subjects and two subjects with genetically determined deficiency of lipoprotein lipase. The triglyceride-rich lipoproteins were obtained from a lipoprotein lipase-deficient donor 4 hr after a fat-rich meal in order to obtain chylomicrons (containing apo B-48) and very low density lipoproteins (VLDL) (containing apo B-100), whose properties had not been modified by the action of this enzyme. The triglyceride-rich lipoproteins were labeled with 125I and injected intravenously into recipients who had fasted overnight. In normal recipients, most of the apo B-48 was removed from the blood within 15 min, and most of the apo B-100 was removed within 30 min. In the lipoprotein lipase-deficient recipients, most of the injected apo B-100 remained in the blood for more than 8 hr; removal of apo B-48 was only slightly more rapid. In all subjects, only trace amounts of either protein were found in lipoproteins more dense than 1.006 g/ml. The results indicate that (i) the removal of the apo B of both chylomicrons and large VLDL from the blood is dependent upon the hydrolysis of their component triglycerides by lipoprotein lipase, and (ii) little or no apo B-48 of chylomicrons or apo B-100 of large VLDL is converted appreciably to low density lipoproteins (LDL). Our results suggest that the reported variability of the conversion of VLDL to LDL may be related to the size and composition of the particles secreted from the liver. The rapid production of remnant particles that are removed efficiently by the liver may minimize the opportunity for further reactions leading to the formation of LDL.

Full text

PDF
1839

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barter P., Faergeman O., Havel R. J. Metabolism of cholesteryl esters of very low density lipoproteins in the guinea pig. Metabolism. 1977 Jun;26(6):615–622. doi: 10.1016/0026-0495(77)90083-x. [DOI] [PubMed] [Google Scholar]
  2. Deckelbaum R. J., Eisenberg S., Oschry Y., Butbul E., Sharon I., Olivecrona T. Reversible modification of human plasma low density lipoproteins toward triglyceride-rich precursors. A mechanism for losing excess cholesterol esters. J Biol Chem. 1982 Jun 10;257(11):6509–6517. [PubMed] [Google Scholar]
  3. Eaton R. P., Allen R. C., Schade D. S. Overproduction of a kinetic subclass of VLDL-apoB, and direct catabolism of VLDL-apoB in human endogenous hypertriglyceridemia: an analytical model solution of tracer data. J Lipid Res. 1983 Oct;24(10):1291–1303. [PubMed] [Google Scholar]
  4. Faergeman O., Sata T., Kane J. P., Havel R. J. Metabolism of apoprotein B of plasma very low density lipoproteins in the rat. J Clin Invest. 1975 Dec;56(6):1396–1403. doi: 10.1172/JCI108220. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Ghiselli G. Evidence that two synthetic pathways contribute to the apolipoprotein B pool of the low density lipoprotein fraction of rabbit plasma. Biochim Biophys Acta. 1982 May 13;711(2):311–315. doi: 10.1016/0005-2760(82)90040-6. [DOI] [PubMed] [Google Scholar]
  6. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HAVEL R. J., GORDON R. S., Jr Idiopathic hyperlipemia: metabolic studies in an affected family. J Clin Invest. 1960 Dec;39:1777–1790. doi: 10.1172/JCI104202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Havel R. J., Kane J. P. Quantification of triglyceride transport in blood plasma: a critical analysis. Fed Proc. 1975 Dec;34(13):2250–2257. [PubMed] [Google Scholar]
  9. Havel R. J., Kita T., Kotite L., Kane J. P., Hamilton R. L., Goldstein J. L., Brown M. S. Concentration and composition of lipoproteins in blood plasma of the WHHL rabbit. An animal model of human familial hypercholesterolemia. Arteriosclerosis. 1982 Nov-Dec;2(6):467–474. doi: 10.1161/01.atv.2.6.467. [DOI] [PubMed] [Google Scholar]
  10. Havel R. J. Lipoprotein biosynthesis and metabolism. Ann N Y Acad Sci. 1980;348:16–29. doi: 10.1111/j.1749-6632.1980.tb21288.x. [DOI] [PubMed] [Google Scholar]
  11. Holmquist L., Carlson K., Carlson L. A. Comparison between the use of isopropanol and tetramethylurea for the solubilisation and quantitation of human serum very low density apolipoproteins. Anal Biochem. 1978 Aug 1;88(2):457–460. doi: 10.1016/0003-2697(78)90444-x. [DOI] [PubMed] [Google Scholar]
  12. Huang H., Kauan J. W., Guilbault G. G. Fluorometric enzymatic determination of total cholesterol in serum. Clin Chem. 1975 Oct;21(11):1605–1608. [PubMed] [Google Scholar]
  13. Kane J. P. Apolipoprotein B: structural and metabolic heterogeneity. Annu Rev Physiol. 1983;45:637–650. doi: 10.1146/annurev.ph.45.030183.003225. [DOI] [PubMed] [Google Scholar]
  14. Kane J. P., Hardman D. A., Paulus H. E. Heterogeneity of apolipoprotein B: isolation of a new species from human chylomicrons. Proc Natl Acad Sci U S A. 1980 May;77(5):2465–2469. doi: 10.1073/pnas.77.5.2465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kita T., Brown M. S., Bilheimer D. W., Goldstein J. L. Delayed clearance of very low density and intermediate density lipoproteins with enhanced conversion to low density lipoprotein in WHHL rabbits. Proc Natl Acad Sci U S A. 1982 Sep;79(18):5693–5697. doi: 10.1073/pnas.79.18.5693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Nestel P. J., Billington T., Fidge N. H. Slower removal of intestinal apolipoprotein B-48 than of apolipoprotein B-100 in severely hypertriglyceridemic subjects. Biochim Biophys Acta. 1983 May 16;751(3):422–427. doi: 10.1016/0005-2760(83)90301-6. [DOI] [PubMed] [Google Scholar]
  17. Nicoll A., Lewis B. Evaluation of the roles of lipoprotein lipase and hepatic lipase in lipoprotein metabolism: in vivo and in vitro studies in man. Eur J Clin Invest. 1980 Dec;10(6):487–495. doi: 10.1111/j.1365-2362.1980.tb02090.x. [DOI] [PubMed] [Google Scholar]
  18. Pagnan A., Havel R. J., Kane J. P., Kotite L. Characterization of human very low density lipoproteins containing two electrophoretic populations: double pre-beta lipoproteinemia and primary dysbetalipoproteinemia. J Lipid Res. 1977 Sep;18(5):613–622. [PubMed] [Google Scholar]
  19. Quarfordt S. H., Goodman D. S. Heterogeneity in the rate of plasma clearance of chylomicrons of different size. Biochim Biophys Acta. 1966 Apr 4;116(2):382–385. doi: 10.1016/0005-2760(66)90019-1. [DOI] [PubMed] [Google Scholar]
  20. Sata T., Havel R. J., Jones A. L. Characterization of subfractions of triglyceride-rich lipoproteins separated by gel chromatography from blood plasma of normolipemic and hyperlipemic humans. J Lipid Res. 1972 Nov;13(6):757–768. [PubMed] [Google Scholar]
  21. Schaefer E. J., Jenkins L. L., Brewer H. B., Jr Human chylomicron apolipoprotein metabolism. Biochem Biophys Res Commun. 1978 Jan 30;80(2):405–412. doi: 10.1016/0006-291x(78)90691-5. [DOI] [PubMed] [Google Scholar]
  22. Sigurdsson G., Nicoll A., Lewis B. The metabolism of low density lipoprotein in endogenous hypertriglyceridaemia. Eur J Clin Invest. 1976 Mar 31;6(2):151–158. doi: 10.1111/j.1365-2362.1976.tb00506.x. [DOI] [PubMed] [Google Scholar]
  23. Sigurdsson G., Noel S. P., Havel R. J. Catabolism of the apoprotein of low density lipoproteins by the isolated perfused rat liver. J Lipid Res. 1978 Jul;19(5):628–634. [PubMed] [Google Scholar]
  24. Stewart C. P., Hendry E. B. The phospholipins of blood. Biochem J. 1935 Jul;29(7):1683–1689. doi: 10.1042/bj0291683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Turner P. R., Miller N. E., Cortese C., Hazzard W., Coltart J., Lewis B. Splanchnic metabolism of plasma apolipoprotein B: studies of artery-hepatic vein differences of mass and radiolabel in fasted human subjects. J Clin Invest. 1981 Jun;67(6):1678–1686. doi: 10.1172/JCI110205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Van't Hooft F. M., Hardman D. A., Kane J. P., Havel R. J. Apolipoprotein B (B-48) of rat chylomicrons is not a precursor of the apolipoprotein of low density lipoproteins. Proc Natl Acad Sci U S A. 1982 Jan;79(1):179–182. doi: 10.1073/pnas.79.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES