Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2008 Jul 27;48(2):228–242. doi: 10.1007/s12088-008-0034-1

Phylogeny vs genome reshuffling: horizontal gene transfer

Sadhana Lal 1, Simrita Cheema 1, Vipin C Kalia 1,
PMCID: PMC3450171  PMID: 23100716

Abstract

The evolutionary events in organisms can be tracked to the transfer of genetic material. The inheritance of genetic material among closely related organisms is a slow evolutionary process. On the other hand, the movement of genes among distantly related species can account for rapid evolution. The later process has been quite evident in the appearance of antibiotic resistance genes among human and animal pathogens. Phylogenetic trees based on such genes and those involved in metabolic activities reflect the incongruencies in comparison to the 16S rDNA gene, generally used for taxonomic relationships. Such discrepancies in gene inheritance have been termed as horizontal gene transfer (HGT) events. In the post-genomic era, the explosion of known sequences through large-scale sequencing projects has unraveled the weakness of traditional 16S rDNA gene tree based evolutionary model. Various methods to scrutinize HGT events include atypical composition, abnormal sequence similarity, anomalous phylogenetic distribution, unusual phyletic patterns, etc. Since HGT generates greater genetic diversity, it is likely to increase resource use and ecosystem resilience.

Keywords: Evolution, Phylogeny, Horizontal gene transfer

Full Text

The Full Text of this article is available as a PDF (549.8 KB).

References

  • 1.Syvanen M. Horizontal Gene Transfer: Evidence and possible consequences. Annu Rev Genet. 1994;28:237–261. doi: 10.1146/annurev.ge.28.120194.001321. [DOI] [PubMed] [Google Scholar]
  • 2.Lopez-Garc P., Moreira D. Metabolic symbiosis at the origin of eukaryotes. Trends Biochem Sci. 1999;24:88–93. doi: 10.1016/S0968-0004(98)01342-5. [DOI] [PubMed] [Google Scholar]
  • 3.Dutta C., Pan A. Horizontal gene transfer and bacterial diversity. J Biosci. 2002;27(1):27–33. doi: 10.1007/BF02703681. [DOI] [PubMed] [Google Scholar]
  • 4.He C.Y., Striepen B., Pletcher C.H., Murray J.M., Roos D.S. Targeting and processing of nuclear-encoded apicoplast proteins in plastid segregation mutants of Toxoplasma gondii. J Biol Chem. 2001;276:28436–28442. doi: 10.1074/jbc.M102000200. [DOI] [PubMed] [Google Scholar]
  • 5.Martin W., Mueller M. The hydrogen hypothesis for the first eukaryote. Nature. 1998;392:37–41. doi: 10.1038/32096. [DOI] [PubMed] [Google Scholar]
  • 6.Avery O.T., MacLeod C.M., McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med. 1944;149:297–326. doi: 10.1084/jem.149.2.297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Smith M.W., Feng D.F., Doolittle R.F. Evolution by acquisition: the case for horizontal gene transfers. Trends Biochem Sci. 1992;17:489–493. doi: 10.1016/0968-0004(92)90335-7. [DOI] [PubMed] [Google Scholar]
  • 8.Groisman E.A., Ochman H. Pathogenicity islands: bacterial evolution in quantum leaps. Cell. 1996;87:791–794. doi: 10.1016/S0092-8674(00)81985-6. [DOI] [PubMed] [Google Scholar]
  • 9.Brown J.R., Doolittle W.F. Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev. 1997;61:456–502. doi: 10.1128/mmbr.61.4.456-502.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Doolittle W.F. Phylogenetic classification and the universal tree. Science. 1999;284:2124–2128. doi: 10.1126/science.284.5423.2124. [DOI] [PubMed] [Google Scholar]
  • 11.Woese C.R. Interpreting the universal phylogenetic tree. Proc Natl Acad Sci USA. 2000;97:8392–8396. doi: 10.1073/pnas.97.15.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Koonin E.V., Makarova K.S., Aravind L. Horizontal gene transfer in prokaryotes: quantification and classification. Annu Rev Microbiol. 2001;55:709–742. doi: 10.1146/annurev.micro.55.1.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Philippe H., Douady C.J. Horizontal gene transfer and phylogenetics. Curr Opin Microbiol. 2003;6:498–505. doi: 10.1016/j.mib.2003.09.008. [DOI] [PubMed] [Google Scholar]
  • 14.Martin W., Embley T.M. Early evolution comes full circle. Nature. 2004;431:134–137. doi: 10.1038/431134a. [DOI] [PubMed] [Google Scholar]
  • 15.Rivera M.C., Lake J.A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature. 2004;431:152–155. doi: 10.1038/nature02848. [DOI] [PubMed] [Google Scholar]
  • 16.Tsirigos A., Rigoutsos I. A new computational method for the detection of horizontal gene transfer events. Nucleic Acids Res. 2005;33:922–933. doi: 10.1093/nar/gki187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Charlebois R.L., Beiko R.G., Ragan M.A. Branching out. Nature. 2003;421:217. doi: 10.1038/421217a. [DOI] [PubMed] [Google Scholar]
  • 18.Lerat E., Daubin V., Ochman H., Moran N.A. Evolutionary origins of genomic repertoires in bacteria. PLoS Biol. 2005;3:e130. doi: 10.1371/journal.pbio.0030130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Choi I.-G., Kim S.-H. Global extent of horizontal gene transfer. Proc Natl Acad Sci USA. 2007;104:4489–4494. doi: 10.1073/pnas.0611557104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Ochman H., Herat E., Daubin V. Examining bacterial species under the specter of gene transfer and exchange. Proc Natl Acad Sci USA. 2005;102:6595–6599. doi: 10.1073/pnas.0502035102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Dagan T., Martin W. Ancestral genome sizes specify the minimum rate of lateral gene transfer during prokaryote evolution. Proc Natl Acad Sci USA. 2007;104:870–875. doi: 10.1073/pnas.0606318104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Aertsen A., Michiels C.W. Diversify or die: generation of diversity in response to stress. Crit Rev Microbiol. 2005;31:69–78. doi: 10.1080/10408410590921718. [DOI] [PubMed] [Google Scholar]
  • 23.Beiko R.G., Harlow T.J., Ragan M.A. Highways of gene sharing in prokaryotes. Proc Natl Acad Sci USA. 2005;102:14332–14337. doi: 10.1073/pnas.0504068102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Lawrence J.G. Selfish operons: the evolutionary impact of gene clustering in prokaryotes and eukaryotes. Curr Opin Genet Dev. 1999;9:642–648. doi: 10.1016/S0959-437X(99)00025-8. [DOI] [PubMed] [Google Scholar]
  • 25.Lawrence J.G., Roth J.R. Selfish operons: Horizontal transfer may drive the evolution of gene clusters. Genetics. 1996;143:1843–1860. doi: 10.1093/genetics/143.4.1843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Lawrence J.G., Roth J.R. The cobalamin (coenzyme B 12 ) biosynthetic genes of Escherichia coli. J Bacteriol. 1995;177:6371–6380. doi: 10.1128/jb.177.22.6371-6380.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Lawrence J.G., Roth J.R. Evolution of coenzyme B12 synthesis among enteric bacteria: evidence for loss and reacquisition of a multigene complex. Genetics. 1996;142:11–24. doi: 10.1093/genetics/142.1.11. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Matsui K., Sano K., Ohtsubo E. Complete nucleotide and deduced amino acid sequences of the Brevibacterium luctofermentum tryptophan operon. Nucleic Acids Res. 1986;14:10113–10114. doi: 10.1093/nar/14.24.10113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Williams P.A., Sayers J.R. The evolution of pathways for aromatic hydrocarbon oxidation in Pseudomonas. Biodegradation. 1994;5:195–217. doi: 10.1007/BF00696460. [DOI] [PubMed] [Google Scholar]
  • 30.Wyndham R.C., Cashore A.E., Nakatsu C.H., Peel M.C. Catabolic transposons. Biodegradation. 1994;5:323–342. doi: 10.1007/BF00696468. [DOI] [PubMed] [Google Scholar]
  • 31.Meer J.R. Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds. Antonie van Leeuwenhoek. J Microbiol Serol. 1997;71:159–178. doi: 10.1023/a:1000166400935. [DOI] [PubMed] [Google Scholar]
  • 32.Sharma P., Raina V., Kumari R., Malhotra S., Dogra C., Kumari H., Kohler H.-P., Buser H.-R., Holliger C., Lal R. Haloalkane dehalogenase LinB is responsible for beta-and delta-hexachlorocyclohexane transformation in Sphingobium indicum B90A. Appl Environ Microbiol. 2006;72(9):5720–5727. doi: 10.1128/AEM.00192-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Dogra C., Raina V., Pal R., Suar M., Lal S., Gartemann K.-H., Holliger C., Meer J.R., Lal R. Organization of lin genes and IS6100 among different strains of hexachlorocyclohexane-degrading Sphingomonas paucimobilis: evidence for horizontal gene transfer. J Bacteriol. 2004;186(8):2225–2235. doi: 10.1128/JB.186.8.2225-2235.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Rosen B.P. Families of arsenic transporters. Trends Microbiol. 1999;7:207–212. doi: 10.1016/S0966-842X(99)01494-8. [DOI] [PubMed] [Google Scholar]
  • 35.Gihring T.M., Bond P.L., Peters S., Banfield J.F. Arsenic resistance in the archaeon Ferroplasma acidarmanus: new insights into the structure and evolution of arsenic genes. Extremophiles. 2003;7:123–130. doi: 10.1007/s00792-002-0303-6. [DOI] [PubMed] [Google Scholar]
  • 36.Shen Y., Buick R., Canfield D.E. Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature. 2001;410:77–81. doi: 10.1038/35065071. [DOI] [PubMed] [Google Scholar]
  • 37.Klein M., Friedrich M., Roger A.J., Hugenholtz P., Fishbain S., Abicht H., Blackall L.L., Stahl D.A., Wagner M. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol. 2001;183:6028–6035. doi: 10.1128/JB.183.20.6028-6035.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Aravind L., Tatusov R.L., Wolf Y.I., Walker D.R., Koonin E.V. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet. 1998;14:442–444. doi: 10.1016/S0168-9525(98)01553-4. [DOI] [PubMed] [Google Scholar]
  • 39.Wolf Y.I., Aravind L., Koonin E.V. Rickettsiae and Chlamydia: evidence of horizontal gene transfer and gene exchange. Trends Genet. 1998;14:442–444. doi: 10.1016/S0168-9525(98)01553-4. [DOI] [PubMed] [Google Scholar]
  • 40.Cruz F., Davies J. Horizontal gene transfer and the origin of species: lessons from bacteria. Trends Microbiol. 2000;8:128–133. doi: 10.1016/S0966-842X(00)01703-0. [DOI] [PubMed] [Google Scholar]
  • 41.Xiong J., Fischer W.M., Inoue K., Nakahara M., Bauer C.E. Molecular evidence for the early evolution of photosynthesis. Science. 2000;289:1724–1730. doi: 10.1126/science.289.5485.1724. [DOI] [PubMed] [Google Scholar]
  • 42.Macalady J., Banfield J.F. Molecular geomicrobiology: genes and geochemical cycling. Earth and Planetary Science Letters. 2003;209:1–17. doi: 10.1016/S0012-821X(02)01010-5. [DOI] [Google Scholar]
  • 43.Gioia D., Peel M., Fava F., Wyndham R.C. Structures of homologous composite transposons carrying cbaABC genes from Europe and North America. Appl Environ Microbiol. 1998;64:1940–1946. doi: 10.1128/aem.64.5.1940-1946.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Campbell A., Mrazek J., Karlin S. Genome signature comparisons among prokaryote, plasmid, and mitochondrial DNA. Proc Natl Acad Sci USA. 1999;96:9184–9189. doi: 10.1073/pnas.96.16.9184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 45.Dubnau D. DNA uptake in bacteria. Annu Rev Microbiol. 1999;53:217–244. doi: 10.1146/annurev.micro.53.1.217. [DOI] [PubMed] [Google Scholar]
  • 46.Hall R.M., Collis C.M. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol Microbiol. 1995;15:593–600. doi: 10.1111/j.1365-2958.1995.tb02368.x. [DOI] [PubMed] [Google Scholar]
  • 47.Mazel D., Dychinco B., Webb V.A., Davies J. A distinctive class of integron in the Vibrio cholerae genome. Science. 1998;280:605–608. doi: 10.1126/science.280.5363.605. [DOI] [PubMed] [Google Scholar]
  • 48.Dowson C.G., Coffey T.J., Kell C., Whiley R.A. Evolution of penicillin resistance in Streptococcus pneumoniae; the role of Streptococcus mitis in the formation of a low affinity PBP2B in S. pneumomae. Mol Microbiol. 1993;9:635–643. doi: 10.1111/j.1365-2958.1993.tb01723.x. [DOI] [PubMed] [Google Scholar]
  • 49.Lujan R., Zhang Q.Y., Saez Nieto J.A., Jones D.M., Spratt B.G. Penicillin-resistant isolates of Neisseria lactamica produce altered forms of penicillin-binding protein 2 that arose by interspecies horizontal gene transfer. Antimicrob Agents Chemother. 1991;35:300–304. doi: 10.1128/aac.35.2.300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Bowler L.D., Zhang Q.Y., Riou J.Y., Spratt B.G. Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: Natural events and laboratory simulation. J Bacteriol. 1994;176:333–337. doi: 10.1128/jb.176.2.333-337.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Spratt B.G., Bowler L.D., Zhang Q.Y., Zhou J., Smith J.M. Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J Mol Evol. 1992;34:115–125. doi: 10.1007/BF00182388. [DOI] [PubMed] [Google Scholar]
  • 52.Hacker J., Blum-Oehler G., Mühldorfer I., Tschäpe H. Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Mol Microbiol. 1997;23:1089–1097. doi: 10.1046/j.1365-2958.1997.3101672.x. [DOI] [PubMed] [Google Scholar]
  • 53.Blum G., Ott M., Lischewski A., Ritter A., Imrich H., Tschape H., Hacker J. Excision of large DNA regions termed pathogenicity islands from tRNA-specific loci in the chromosome of an Escherichia coli wild-type pathogen. Infect Immun. 1994;62:606–614. doi: 10.1128/iai.62.2.606-614.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.McDaniel T.K., Kaper J.B. A cloned pathogenicity island from enteropathogenic Escherichia coli confers the attaching and effacing phenotype on E. coli K-12. Mol Microbiol. 1997;23:399–407. doi: 10.1046/j.1365-2958.1997.2311591.x. [DOI] [PubMed] [Google Scholar]
  • 55.Moss J.E., Cardozo T.J., Zychlinsky A., Groisman E.A. The selC-associated SHI-2 pathogenicity island of Shigella flexneri. Mol Microbiol. 1999;33:74–83. doi: 10.1046/j.1365-2958.1999.01449.x. [DOI] [PubMed] [Google Scholar]
  • 56.Vokes S.A., Reeves S.A., Torres A.G., Payne S.M. The aerobactin iron transport system genes in Shigella flexneri are present within a pathogenicity island. Mol Microbiol. 1999;33:63–73. doi: 10.1046/j.1365-2958.1999.01448.x. [DOI] [PubMed] [Google Scholar]
  • 57.Blanc-Potard A.B., Groisman E.A. The Salmonella selC locus contains a pathogenicity island mediating intramacrophage survival. EMBO J. 1997;16:5376–5385. doi: 10.1093/emboj/16.17.5376. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Eisen J.A. Horizontal gene transfer among microbial genomes: new insights from complete genome analysis. Curr Opin Genet Dev. 2000;10:606–611. doi: 10.1016/S0959-437X(00)00143-X. [DOI] [PubMed] [Google Scholar]
  • 59.Ragan M.A. Detection of lateral gene transfer among microbial genomes. Curr Opin Genet Dev. 2001;11:620–626. doi: 10.1016/S0959-437X(00)00244-6. [DOI] [PubMed] [Google Scholar]
  • 60.Ochman H., Lawrence J.G., Groisman E.A. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299–304. doi: 10.1038/35012500. [DOI] [PubMed] [Google Scholar]
  • 61.Grantham R., Gautier C., Gouy M., Mercier R., Pavé A. Codon catalog usage and the genome hypothesis. Nucleic Acids Res. 1980;8:197–c. doi: 10.1093/nar/8.1.197-c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Ellis J., Morrison D.A., Kalinna B. Comparison of the patterns of codon usage and bias between Brugia, Echinococcus, Onchocerca and Schistosoma species. Parasitol Res. 1995;81:388–393. doi: 10.1007/BF00931499. [DOI] [PubMed] [Google Scholar]
  • 63.Medigue C., Rouxel T., Vigier P., Henaut A., Danchin A. Evidence for horizontal gene transfer in Escherichia coli speciation. J Mol Biol. 1991;222:851–856. doi: 10.1016/0022-2836(91)90575-Q. [DOI] [PubMed] [Google Scholar]
  • 64.Lawrence J.G., Ochman H. Amelioration of bacterial genomes: rates of change and exchange. J Mol Evol. 1997;44:383–397. doi: 10.1007/PL00006158. [DOI] [PubMed] [Google Scholar]
  • 65.Mrazek J., Karlin S. Detecting alien genes in bacterial genomes. Ann NY Acad Sci. 1999;870:314–329. doi: 10.1111/j.1749-6632.1999.tb08893.x. [DOI] [PubMed] [Google Scholar]
  • 66.Garcia-Vallve S., Romeu A., Palau J. Horizontal gene transfer in bacterial and archaeal complete genome. Genome Res. 2000;10:1719–1725. doi: 10.1101/gr.130000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Groisman E.A., Sturmoski M.A., Solomon F.R., Lin R., Ochman H. Molecular, functional, and evolutionary analysis of sequences specific to Salmonella. Proc Natl Acad Sci USA. 1993;90:1033–1037. doi: 10.1073/pnas.90.3.1033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Groisman E.A., Ochman H. Cognate gene clusters govern invasion of host epithelial cells by Salmonella typhimurium and Shigella flexneri. EMBO J. 1993;12:3779–3787. doi: 10.1002/j.1460-2075.1993.tb06056.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Shanley M.S., Harrison A., Parales R.E., Kowalchuk G., Mitchell D.J., Ornston L.N. Unusual G+C content and codon usage in catZJF, a segment of the ben-cat supra-operonic cluster in the Acinetobacter caloaceticus chromosome. Gene. 1994;138:59–65. doi: 10.1016/0378-1119(94)90783-8. [DOI] [PubMed] [Google Scholar]
  • 70.Groisman E.A., Saier M.H., Jr, Ochman H. Horizontal transfer of a phosphatase gene as evidence for the mosaic structure of the Salmonella genome. EMBO J. 1992;11:1309–1316. doi: 10.1002/j.1460-2075.1992.tb05175.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 71.Lan R., Reeves P.R. Gene transfer is a major factor in bacterial evolution. Mol Biol Evol. 1996;13:47–55. doi: 10.1093/oxfordjournals.molbev.a025569. [DOI] [PubMed] [Google Scholar]
  • 72.Bult C.J., White O., Olsen G.J., Zhou L., Fleishmann R.D., Sutton G.G., Blake J.A., Fitzgerald L.M., Clayton R.A., Gocayne J.D., Kertavage A.R., Dougherty B.A., Tomb J.F., Adams M.D., Reich C.I., Overbeek R., Kirkness E.F., Weinstock K.G., Merrick J.M., Glodek A., Scott J.L., Geoghagen N.S.M., Weidman J.F., Fuhrmann J.L., Nguyen D., Utterback T.R., Kelley J.M., Peterson J.D., Sadow P.W., Hanna M.C., Cotton M.D., Roberts K.M., Hurst M.A., Kaine B.P., Borodovsky M., Klenk H.P., Fraser C.M., Smith H.O., Woese C.R., Ventor J.C. Complete genome sequence of the methanogenic Archaeon, Methanococcus jannaschii. Science. 1996;273:1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  • 73.Klenk H.-P., Clayton R.A., Tomb J.-F., White O., Nelson K.E., Ketchum K.A., Dodson R.J., Gwinn M., Hickey E.K., Peterson J.D., Richardson D.L., Kerlavage A.R., Graham D.E., Kyrpides N.C., Fleischmann R.D., Quackenbush J., Lee N.H., Sutton G.G., Gill S., Kirkness E.F., Dougherty B.A., McKenney K., Adams M.D., Loftus B., Peterson S., Reich C.I., McNeil L.K., Badger J.H., Glodek A., Zhou L., Overbeek R., Gocayne J.D., Weidman J.F., McDonald L., Utterback T., Cotton M.D., Spriggs T., Artiach P., Kaine B.P., Sykes S.M., Sadow P.W., D’Andrea K.P., Bowman C., Fujii C., Garland S.A., Mason T.M., Olsen G.J., Fraser C.M., Smith H.O., Woese C.R., Venter J.C. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997;390:364–370. doi: 10.1038/37052. [DOI] [PubMed] [Google Scholar]
  • 74.Nelson K.E., Clayton R.A., Gill S.R., Gwinn M.L., Dodson R.J., Haft D.H., Hickey E.K., Peterson J.D., Nelson W.C., Ketchum K.A., McDonald L., Utterback T.R., Malek J.A., Linher K.D., Garrett M.M., Stewart A.M., Cotton M.D., Pratt M.S., Phillips C.A., Richardson D., Heidelberg J., Sutton G.G., Fleischmann R.D., Eisen J.A., White O., Salzberg S.L., Smith H.O., Venter J.C., Fraser C.M. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritime. Nature. 1999;399:323–329. doi: 10.1038/20601. [DOI] [PubMed] [Google Scholar]
  • 75.Karlin S., Burge C. Dinucleotide relative abun-dance extremes: a genomic signature. Trends Genet. 1995;11:283–290. doi: 10.1016/S0168-9525(00)89076-9. [DOI] [PubMed] [Google Scholar]
  • 76.Sharp P.M., Li W.-H. The codon adaptation index-a measure of directional synonymous codon usage bias and its potential applications. Nucleic Acids Res. 1987;15:1281–1295. doi: 10.1093/nar/15.3.1281. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Karlin S., Mrázek J., Campbell A.M. Codon usages in different gene classes of the Escherichia coli genome. Mol Microbiol. 1998;29:1341–1355. doi: 10.1046/j.1365-2958.1998.01008.x. [DOI] [PubMed] [Google Scholar]
  • 78.Tatusov R.L., Koonin E.V., Lipman D.J. A genomic perspective on protein families. Science. 1997;278:631–637. doi: 10.1126/science.278.5338.631. [DOI] [PubMed] [Google Scholar]
  • 79.Tatusov R.L., Natale D.A., Garkavtsev I.V., Tatusova T.A., Shankavaram U.T., Rao B.S., Kiryutin B., Galperin M.Y., Fedorova N.D., Koonin E.V. The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res. 2001;29:22–28. doi: 10.1093/nar/29.1.22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Glazko G.V., Mushegian A.R. Detection of evolutionarily stable fragments of cellular pathways by hierarchical clustering of phyletic patterns. Genome Biol. 2004;5:R32. doi: 10.1186/gb-2004-5-5-r32. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Pellegrini M., Marcotte E.M., Thompson M.J., Eisenberg D., Yeaster T.O. Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA. 1999;96:4285–4288. doi: 10.1073/pnas.96.8.4285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Koonin E.V., Mushegian A.R., Galperin M.Y., Walker D.R. Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the Archaea. Mol Microbiol. 1997;25:619–637. doi: 10.1046/j.1365-2958.1997.4821861.x. [DOI] [PubMed] [Google Scholar]
  • 83.Doolittle W.F., Logsdon J.M., Jr Archaeal genomics: do archaea have a mixed heritage? Curr Biol. 1998;8:R209–R211. doi: 10.1016/S0960-9822(98)70127-7. [DOI] [PubMed] [Google Scholar]
  • 84.Jain R., Rivera M.C., Lake J.A. Horizontal gene transfer among genomes: the complexity hypothesis. Proc Natl Acad Sci USA. 1999;96:3801–3806. doi: 10.1073/pnas.96.7.3801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Mongodin E.F., Nelson K.E., Daugherty S., DeBoy R.T., Wister J., Khouri H., Weidman J., Walsh D.A., Papke R.T., Sanchez Perez G., Sharma A.K., Nesbø C.L., MacLeod D., Bapteste E., Doolittle W.F., Charlebois R.L., Legault B., Rodriguez-Valera F. The genome of Salinibacter ruber: Convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci USA. 2005;102:18147–18152. doi: 10.1073/pnas.0509073102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Kurland C.G., Canback B., Berg O.G. Horizontal gene transfer: A critical view. Proc Natl Acad Sci USA. 2003;100:9658–9662. doi: 10.1073/pnas.1632870100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Huynen M.A., Snel B., Bork P. Lateral gene transfer, genome surveys, and the phylogeny of prokaryotes. Science. 1999;286:1443a. doi: 10.1126/science.286.5444.1443a. [DOI] [Google Scholar]
  • 88.Snel B., Bork P., Huynen M.A. Genome phylogeny based on gene content. Nat Genet. 1999;21:108–110. doi: 10.1038/5052. [DOI] [PubMed] [Google Scholar]
  • 89.Korbel J.O., Snel B., Huynen M.A., Bork P. SHOT: a web server for the construction of genome phylogenies. Trends Genet. 2002;18:158–162. doi: 10.1016/S0168-9525(01)02597-5. [DOI] [PubMed] [Google Scholar]
  • 90.Tekaia F., Lazcano A., Dujon B. The genomic tree as revealed from whole proteome comparisons. Genome Res. 1999;9:550–557. [PMC free article] [PubMed] [Google Scholar]
  • 91.Fitz-Gibbon S.T., House C.H. Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res. 1999;27:4218–4222. doi: 10.1093/nar/27.21.4218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.House C.H., Fitz-Gibbon S.T. Using homolog groups to create a whole-genomic tree of free-living organisms: an update. J Mol Evol. 2002;54:539–547. doi: 10.1007/s00239-001-0054-5. [DOI] [PubMed] [Google Scholar]
  • 93.Wolf Y.I., Rogozin I.B., Grishin N.V., Tatusov R.L., Koonin E.V. Genome trees constructed using five different approaches suggest new major bacterial clades. BMC Evol Biol. 2001;1:8. doi: 10.1186/1471-2148-1-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Lin J., Gerstein M. Whole-genome trees based on the occurrence of folds and orthologs: implications for comparing genomes on different levels. Genome Res. 2000;10:808–818. doi: 10.1101/gr.10.6.808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Beck J.T., Zhao S., Wang C.C. Cloning, sequencing, and structural analysis of the DNA encoding inosine monophosphate dehydrogenase (EC1.1.1.205) from Tritrichomonas foetus. Exp Parasitol. 1994;78:101–112. doi: 10.1006/expr.1994.1010. [DOI] [PubMed] [Google Scholar]
  • 96.Berg O.G., Kurland C.G. Evolution of microbial genomes: sequence acquisition and loss. Mol Biol Evol. 2002;19:2265–2276. doi: 10.1093/oxfordjournals.molbev.a004050. [DOI] [PubMed] [Google Scholar]
  • 97.Mount DM (2001) Bioinformatics Sequence and Genome Analysis, New York Cold Spring Harbour Laboratory Press p. 247–248
  • 98.Natale D.A., Shankavaram U.T., Galperin M.Y., Wolf Y.I., Aravind L., Koonin E.V. Towards understanding the first genome sequence of a crenarchaeon by genome annotation using clusters of orthologous groups of proteins (COGs) Genome Biol. 2000;1:0009.1–0009.19. doi: 10.1186/gb-2000-1-5-research0009. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 99.Clarke G.D.P., Beiko R.G., Ragan M.A., Charlebois R.L. Inferring genome trees by using a filter to eliminate phylogenetically discordant sequences and a distance matrix based on mean normalized BLASTP scores. J Bacteriol. 2002;184:2072–2080. doi: 10.1128/JB.184.8.2072-2080.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Wolf Y.I., Brenner S.E., Bash P.A., Koonin E.V. Distribution of protein folds in the three superkingdoms of life. Genome Res. 1999;9:17–26. [PubMed] [Google Scholar]
  • 101.Eisen J.A. The RecA protein as a model molecule for molecular systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol. 1995;41:1105–1123. doi: 10.1007/BF00173192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Brown J.W., Daniels C.J., Reeve J.N. Gene structure, organization and expression in archaebacteria. Crit Rev Microbiol. 1989;16:287–338. doi: 10.3109/10408418909105479. [DOI] [PubMed] [Google Scholar]
  • 103.Woese C.R. Bacterial evolution. Microbiol Rev. 1987;51:221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 104.Woese C.R., Kandler O., Wheelis M.L. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci USA. 1990;87:4576–4579. doi: 10.1073/pnas.87.12.4576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 105.Fox G.E., Magrum L.J., Balch W.E., Wolfe R.S., Woese C.R. Classification of methanogenic bacteria by 16S ribosomal RNA characterization. Proc Natl Acad Sci USA. 1977;74:4537–4541. doi: 10.1073/pnas.74.10.4537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 106.Woese C.R., Fox G.E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA. 1977;74:5088–5090. doi: 10.1073/pnas.74.11.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Danson M.J. Archaebacteria: the comparative enzymology of their central metabolic pathways. Adv Microb Physiol. 1988;29:165–231. doi: 10.1016/S0065-2911(08)60348-3. [DOI] [PubMed] [Google Scholar]
  • 108.Danson M.J. Central metabolism of the archaebacteria: An overview. Can J Microbiol. 1989;35:58–64. doi: 10.1139/m89-009. [DOI] [PubMed] [Google Scholar]
  • 109.Schönheit P., Schäfer T. Metabolism of hyperthermophiles. World J Microbiol Biotechnol. 1995;11:26–75. doi: 10.1007/BF00339135. [DOI] [PubMed] [Google Scholar]
  • 110.Schloss P.D., Handelsman J. Status of the Microbial Census. Microbiol Mol Biol Rev. 2004;68:686–691. doi: 10.1128/MMBR.68.4.686-691.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Pace N.R., Olsen O.J., Woese C.R. Ribosomal RNA phylogeny and the primary lines of evolutionary descent. Cell. 1986;45:325–326. doi: 10.1016/0092-8674(86)90315-6. [DOI] [PubMed] [Google Scholar]
  • 112.Yap W.H., Zhong Z., Wang Y. Distinct Types of rRNA Operons exist in the genome of the Actinomycete Thermomonospora chromogena and evidence for horizontal transfer of an entire rRNA operon. J Bacteriol. 1999;181:5201–5209. doi: 10.1128/jb.181.17.5201-5209.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 113.Yanai I., Wolf Y.I., Koonin E.V. Evolution of gene fusions: horizontal transfer versus independent events. Genome Biol. 2002;3:0024.1–0024.13. doi: 10.1186/gb-2002-3-5-research0024. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 114.Olsen G.J., Woese C.R., Overbeek R. The winds of (evolutionary) change: breathing new life into microbiology. J Bacteriol. 1994;176:1–6. doi: 10.1128/jb.176.1.1-6.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Doolittle R.F., Handy J. Evolutionary anomalies among the aminoacyl-tRNA synthetases. Curr Opin Genet Dev. 1998;8:630–636. doi: 10.1016/S0959-437X(98)80030-0. [DOI] [PubMed] [Google Scholar]
  • 116.Lawrence J.G., Ochman H. Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA. 1998;95:9413–9417. doi: 10.1073/pnas.95.16.9413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117.Rivera M.C., Jain R., Moore J.E., Lake J.A. Genomic evidence for two functionally distinct gene classes. Proc Natl Acad Sci USA. 1998;95:6239–6244. doi: 10.1073/pnas.95.11.6239. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 118.Makarova K.S., Aravind L., Wolf Y.I., Tatusov R.L., Minton K.W., Koonin E.V., Daly M.J. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev. 2001;65:44–79. doi: 10.1128/MMBR.65.1.44-79.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Iyer L.M., Koonin E.V., Aravind L. Evolution of bacterial RNA polymerase: implications for large scale phylogeny, domain accretion and horizontal gene transfer. Gene. 2004;335:73–88. doi: 10.1016/j.gene.2004.03.017. [DOI] [PubMed] [Google Scholar]
  • 120.Bapteste E., Moreira D., Philippe H. Rampant horizontal gene transfer and phospho-donor change in the evolution of the phosphofructokinase. Gene. 2003;318:185–191. doi: 10.1016/S0378-1119(03)00797-2. [DOI] [PubMed] [Google Scholar]
  • 121.Müller M., Lee J.A., Gordon P., Gaasterland T., Sensen C.W. Presence of prokaryotic and eukaryotic species in all subgroups of the PPi-dependent group II phosphofructokinase protein family. J Bacteriol. 2001;183:6714–6716. doi: 10.1128/JB.183.22.6714-6716.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 122.Venkatesh R., Ganesh N., Guhan N., Reddy M.S., Chandrasekhar T., Muniyappa K. RecX protein abrogates ATP hydrolysis and strand exchange promoted by RecA: insights into negative regulation of homologous recombination. Proc Natl Acad Sci USA. 2002;99:12091–12096. doi: 10.1073/pnas.192178999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123.Stohl E.A., Brockman J.P., Burkle K.L., Morimatsu K., Kowalczykowski S.C., Seifert N.S. Escherichia coli RecX inhibits RecA recombinase and coprotease activities in vitro and in vivo. J Biol Chem. 2003;278:2278–2285. doi: 10.1074/jbc.M210496200. [DOI] [PubMed] [Google Scholar]
  • 124.Lin J., Chen Z.-Z., Tian B., Hua Y.-J. Evolutionary pathways of an ancient gene recX. Gene. 2007;387:15–20. doi: 10.1016/j.gene.2006.07.031. [DOI] [PubMed] [Google Scholar]
  • 125.Schlieper D., Oliva M.A., Andreu J.M., Löwe J. Structure of bacterial tubulin BtubA/B: evidence for horizontal gene transfer. Proc Natl Acad Sci USA. 2005;102:9170–9175. doi: 10.1073/pnas.0502859102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Fuxelius H.-H., Darby A., Min C.-K., Cho N.-H., Andersson Siv G.E. The genomic and metabolic diversity of Rickettsia. Res Microbiol. 2007;158:745–753. doi: 10.1016/j.resmic.2007.09.008. [DOI] [PubMed] [Google Scholar]
  • 127.Eppinger M., Baar C., Linz B., Raddatz G., Lanz C., Keller H., Morelli G., Gressmann H., Achtman M., Schuster S.C. Who ate whom? Adaptive Helicobacter genomic changes that accompanied a host jump from early humans to large felines. PLoS Genet. 2006;2:e120. doi: 10.1371/journal.pgen.0020120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128.Backert S., Meyer T.F. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr Opin Microbiol. 2006;9:207–217. doi: 10.1016/j.mib.2006.02.008. [DOI] [PubMed] [Google Scholar]
  • 129.Linz B., Schuster S.C. Genomic diversity in Helicobacter and related organisms. Res Microbiol. 2007;158:737–744. doi: 10.1016/j.resmic.2007.09.006. [DOI] [PubMed] [Google Scholar]
  • 130.Gophna U., Ron E.Z., Graur D. Bacterial type III secretion systems are ancient and evolved by multiple horizontal transfer events. Gene. 2003;312:151–163. doi: 10.1016/S0378-1119(03)00612-7. [DOI] [PubMed] [Google Scholar]
  • 131.Rahme L.G., Ausubel F.M., Cao H., Drenkard E., Goumnerov B.C., Lau G.W., Mahajan-Miklos S., Plotnikova J., Tan M.-W., Tsongalis J., Walendziewicz C.L., Tompkins R.G. Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci USA. 2000;97(16):8815–8821. doi: 10.1073/pnas.97.16.8815. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Qiu X., Gurkar A.U., Lory S. Interstrain transfer of the large pathogenicity island (PAPI-1) of Pseudomonas aeruginosa. Proc Natl Acad Sci USA. 2006;103:19830–19835. doi: 10.1073/pnas.0606810104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Hughes A.L., Friedman R. Poxvirus genome evolution by gene gain and loss. Mol Phyl Evol. 2005;35:186–195. doi: 10.1016/j.ympev.2004.12.008. [DOI] [PubMed] [Google Scholar]
  • 134.Pisurek O., Okada N. Poxviruses as possible vectors for horizontal transfer of retroposons from reptiles to mammals. Proc Natl Acad Sci USA. 2007;104:12046–12051. doi: 10.1073/pnas.0700531104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 135.Gophna U., Charlebois R.L., Doolittle W.F. Have archaeal genes contributed to bacterial virulence? Trends Microbiol. 2004;12:213–219. doi: 10.1016/j.tim.2004.03.002. [DOI] [PubMed] [Google Scholar]
  • 136.Kechris K.J., Lin J.C., Bickel P.J., Glazer A.N. Quantitative exploration of the occurrence of lateral gene transfer by using nitrogen fixation genes as a case study. Proc Natl Acad Sci USA. 2006;103:9584–9589. doi: 10.1073/pnas.0603534103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 137.Raizada N., Sonakya V., Anand V., Kalia V.C. Waste management and production of future fuels. J Sci Ind Res. 2002;61:184–207. [Google Scholar]
  • 138.Kalia V.C., Purohit H.J. Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol. 2008;35:403–419. doi: 10.1007/s10295-007-0300-y. [DOI] [PubMed] [Google Scholar]
  • 139.Kalia V.C., Jain S.R., Kumar A., Joshi A.P. Fermentation of biowaste to hydrogen by Bacillus licheniformis. World J Microbiol Biotechnol. 1994;10:224–227. doi: 10.1007/BF00360893. [DOI] [PubMed] [Google Scholar]
  • 140.Kalia V.C., Joshi A.P. Conversion of waste biomass (pea-shell) into hydrogen and methane through anaerobic digestion. Bioresour Technol. 1995;53:165–168. doi: 10.1016/0960-8524(95)00077-R. [DOI] [Google Scholar]
  • 141.Kalia V.C., Anand V., Kumar A., Joshi A.P. Efficient biomethanation of plant materials by immobilized bacteria. Proceedings of R’97 Congress (Recovery, Recycling, Re-integration) Geneva, Switzerland. 1997;I:200–205. [Google Scholar]
  • 142.Sonakya V., Raizada N., Kalia V.C. Microbial and enzymatic improvement of anaerobic digestion of waste biomass. Biotechnol Lett. 2001;23:1463–1466. doi: 10.1023/A:1011664912970. [DOI] [Google Scholar]
  • 143.Porwal S., Kumar T., Lal S., Rani A., Kumar S., Cheema S., Purohit H.J., Sharma R., Patel S.K.S., Kalia V.C. Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol. 2007;99:5444–5451. doi: 10.1016/j.biortech.2007.11.011. [DOI] [PubMed] [Google Scholar]
  • 144.Kalia V.C., Chauhan A., Bhattacharyya G., Rashmi X.X. Genomic databases yield novel bioplastic producers. Nat Biotechnol. 2003;21:845–846. doi: 10.1038/nbt0803-845. [DOI] [PubMed] [Google Scholar]
  • 145.Kalia V.C., Lal S., Ghai R., Mandal M., Chauhan A. Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol. 2003;21:152–156. doi: 10.1016/S0167-7799(03)00028-3. [DOI] [PubMed] [Google Scholar]
  • 146.Kalia V.C., Rani A., Lal S., Cheema S., Raut C.P. Combing databases reveals potential antibiotic producers. Expert Opin Drug Discov. 2007;2:211–224. doi: 10.1517/17460441.2.2.211. [DOI] [PubMed] [Google Scholar]
  • 147.Kalia V.C., Lal S., Cheema S. Insight in to the phylogeny of polyhydroxyalkanoate biosynthesis: Horizontal gene transfer. Gene. 2007;389:19–26. doi: 10.1016/j.gene.2006.09.010. [DOI] [PubMed] [Google Scholar]
  • 148.Richardson A.O., Jeffrey D.P. Horizontal gene transfer in plants. J Expt Bot. 2007;58:1–9. doi: 10.1093/jxb/erl148. [DOI] [PubMed] [Google Scholar]
  • 149.Hall C., Brachat S., Dietrich F.S. Contribution of horizontal gene transfer to the evolution of Saccharomyces cerevisiae. Eukaryot Cell. 2005;4:1102–1115. doi: 10.1128/EC.4.6.1102-1115.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Kondo N., Nikoh N., Ijichi N., Shimada M., Fukatsu T. Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect. Proc Natl Acad Sci USA. 2002;99:14280–14285. doi: 10.1073/pnas.222228199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Hotopp JC, Clark ME, Oliveira DC, Foster JM, Fischer P, Torres MC, Giebel JD, Kumar N, Ishmael N, Wang S, Ingram J, Nene RV, Shepard J, Tomkins J, Richards S, Spiro DJ, Ghedin E, Slatko BE, Tettelin H & Werren JH (2007) Widespread lateral gene transfer from Intracellular bacteria to multicellular eukaryotes. Science doi:10.1126/science.1142490 [DOI] [PubMed]
  • 152.Davis C.C., Wurdack K.J. Host-to-parasite gene transfer in flowering plants: Phylogenetic evidence from Malpighiales. Science. 2004;305:676–678. doi: 10.1126/science.1100671. [DOI] [PubMed] [Google Scholar]
  • 153.Nickrent DL, Blarer A, Qiu Y-L, Vidal-Russell R & Anderson FE (2004) Phylogenetic inference in Rafflesiales: the influence of rate heterogeneity and horizontal gene transfer. BMC Evol Biol 4(40). doi:10.1186/1471-2148-4-40 [DOI] [PMC free article] [PubMed]
  • 154.Woloszynska M., Bocer T., Mackiewicz P., Janska H. A fragment of chloroplast DNA was transferred horizontally, probably from non-eudicots, to mitochondrial genome of Phaseolus. Plant Mol Biol. 2004;56:811–820. doi: 10.1007/s11103-004-5183-y. [DOI] [PubMed] [Google Scholar]
  • 155.Doolittle FW (2000) Uprooting the tree of life. Scientific American: 72–77 [DOI] [PubMed]
  • 156.Kunin V., Goldovsky L., Darzentas N., Ouzounis C.A. The net of life: Reconstructing the microbial phylogenetic netwrok. Genome Res. 2005;15:954–959. doi: 10.1101/gr.3666505. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Prakash O., Verma M., Sharma P., Kumar M., Gupta S.K., Khanna M., Lal R. Polyphasic approach of bacterial classification’ An overview of recent advances. Ind J Microbiol. 2007;47:98–108. doi: 10.1007/s12088-007-0022-x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 158.Oh S.J., Joung J.G., Chang J.H., Zhang B.T. Construction of phylogenetic trees by kernel-based comparative analysis of metabolic networks. BMC Bioinformatics. 2006;7:284. doi: 10.1186/1471-2105-7-284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 159.Wenzl P., Wong L., Kwang-won K., Jefferson R.A. A functional screen identifies lateral transfer of betaglucuronidase (gus) from bacteria to fungi. Mol Biol Evol. 2005;22:308–316. doi: 10.1093/molbev/msi018. [DOI] [PubMed] [Google Scholar]
  • 160.Baumann P., Jackson S.P. An archaebacterial homologue of the essential eubacterial cell division protein FtsZ. Proc Natl Acad Sci USA. 1996;93:6726–6730. doi: 10.1073/pnas.93.13.6726. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Wang X., Lutkenhaus J. FtsZ ring: the eubacterial division apparatus conserved in archaebacteria. Mol Microbiol. 1996;21:13–319. doi: 10.1046/j.1365-2958.1996.6421360.x. [DOI] [PubMed] [Google Scholar]
  • 162.Ricard G., McEwan N.R., Dutilh B.E., Jouany J.P., Macheboeuf D., Mitsumori M., McIntosh F.M., Michalowski T., Nagamine T., Nelson N., Newbold C.J., Nsabimana E., Takenaka A., Thomas N.A., Ushida K., Hackstein J.H., Huynen M.A. Horizontal gene transfer from bacteria to rumen ciliates indicates adaptation to their anaerobic, carbohydrates-rich environment. BMC Genomics. 2006;7:22. doi: 10.1186/1471-2164-7-22. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Gomes J.P., Bruno W.J., Borrego M.J., Dean D. Recombination in the genome of Chlamydia trachomatis involving the polymorphic membrane protein C gene relative to ompA and evidence for horizontal gene transfer. J Bacteriol. 2004;186:4295–4306. doi: 10.1128/JB.186.13.4295-4306.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Omelchenko M.V., Makarova K.S., Wolf Y.I., Rogozin I.B., Koonin E.V. Evolution of mosaic operons by horizontal gene transfer and gene displacement in situ. Genome Biol. 2003;4:R55. doi: 10.1186/gb-2003-4-9-r55. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Viale A.M., Arakaki A.K. The chaperone connection to the origins of eukaryotic organelles. FEBS Lett. 1994;341:146–151. doi: 10.1016/0014-5793(94)80446-X. [DOI] [PubMed] [Google Scholar]
  • 166.Gupta R.S. Evolution of the chaperonin families (Hsp60, Hsp10 and Tcp-1) of proteins and the origin of eukaryotic cells. Mol Microbiol. 1995;15:1–11. doi: 10.1111/j.1365-2958.1995.tb02216.x. [DOI] [PubMed] [Google Scholar]
  • 167.Jackson C.R., Dugas S.L. Phylogenetic analysis of bacterial and archaeal arsC gene sequences suggests an ancient, common origin arsenate reductase. BMC Evol Biol. 2003;3:18. doi: 10.1186/1471-2148-3-18. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Sheveleva E.V., Hallick R.B. Recent horizontal intron transfer to a chloroplast genome. Nucleic Acids Res. 2004;32:803–810. doi: 10.1093/nar/gkh225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Klenk H.-P., Palm P., Zillig W. DNA-dependent RNA polymerases as phylogenetic marker molecules. Syst Appl Microbiol. 1993;16:138–147. [Google Scholar]
  • 170.Pühler G., Leffers H., Gropp F., Palm P., Klenk H.-P., Lottspeich F., Garrett R.A., Zillig W. Archaebacterial DNAdependent RNA polymerases testify to the evolution of the eukaryotic nuclear genome. Proc Natl Acad Sci USA. 1989;86:4569–4573. doi: 10.1073/pnas.86.12.4569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Ponting C.P., Aravind L., Schultz J., Bork P., Koonin E.V. Eukaryotic signalling domain homologues in archaea and bacteria, Ancient ancestry and horizontal gene transfer. J Mol Biol. 1999;1289:729–745. doi: 10.1006/jmbi.1999.2827. [DOI] [PubMed] [Google Scholar]
  • 172.Kennelly P.J. Protein kinases and protein phosphatases in prokaryotes: a genomic perspective. FEMS Microbiol Lett. 2002;206:1–8. doi: 10.1111/j.1574-6968.2002.tb10978.x. [DOI] [PubMed] [Google Scholar]
  • 173.Zhang W., Shi L. Evolution of the PPM-family protein phosphatases in Streptomyces: duplication of catalytic domain and lateral recruitment of additional sensory domains. Microbiology. 2004;150:4189–4197. doi: 10.1099/mic.0.27480-0. [DOI] [PubMed] [Google Scholar]
  • 174.Won H., Renner S.S. Horizontal gene transfer from flowering plants to Gnetum. Proc Natl Acad Sci USA. 2003;100:10824–10829. doi: 10.1073/pnas.1833775100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Pruss B., Meyer H.E., Holldorf A.W. Characterization of the glyceraldehyde 3-phosphate dehydrogenase from the extremely halophilic archaebacterium Haloarcula vallismortis. Arch Microbiol. 1993;160:5–11. doi: 10.1007/BF00258139. [DOI] [PubMed] [Google Scholar]
  • 176.Nolling J., Vos W.M. Characterization of the archaeal, plasmidencoded type II restriction-modification system MthTI from Methanobacterium thermoformicicum THF: homology to the bacterial NgoPII system from Neisseria gonorrhoeae. J Bacteriol. 1992;174:5719–5726. doi: 10.1128/jb.174.17.5719-5726.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 177.Brinkman F.S., Blanchard J.L., Cherkasov A., Av-Gay Y., Brunham R.C., Fernandez R.C., Finlay B.B., Otto S.P., Ouellette B.F., Keeling P.J., Rose A.M., Hancock R.E., Jones S.J., Greberg H. Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae, cyanobacteria, and the chloroplast. Genome Res. 2002;12:1159–116796. doi: 10.1101/gr.341802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 178.Lawson F.S., Charlebois R.L., Dillon J.A. Phylogenetic analysis of carbamoylphosphate synthetase genes: evolution involving multiple gene duplications, gene fusions, and insertions and deletions of surrounding sequences. Mol Biol Evol. 1996;13:970–977. doi: 10.1093/oxfordjournals.molbev.a025665. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES