Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2008 Jul 27;48(2):279–286. doi: 10.1007/s12088-008-0038-x

Diversity of ‘benzenetriol dioxygenase’ involved in p-nitrophenol degradation in soil bacteria

Debarati Paul 1, Neha Rastogi 1, Ulrich Krauss 2, Michael Schlomann 3, Gunjan Pandey 1, Janmejay Pandey 1, Anuradha Ghosh 1, Rakesh K Jain 1,
PMCID: PMC3450173  PMID: 23100721

Abstract

Ring hydroxylating dioxygenases (RHDOs) are one of the most important classes of enzymes featuring in the microbial metabolism of several xenobiotic aromatic compounds. One such RHDO is benzenetriol dioxygenase (BtD) which constitutes the metabolic machinery of microbial degradation of several mono- phenolic and biphenolic compounds including nitrophenols. Assessment of the natural diversity of benzenetriol dioxygenase (btd) gene sequence is of great significance from basic as well as applied study point of view. In the present study we have evaluated the gene sequence variations amongst the partial btd genes that were retrieved from microorganisms enriched for PNP degradation from pesticide contaminated agriculture soils. The gene sequence analysis was also supplemented with an in silico restriction digestion analysis. Furthermore, a phylogenetic analysis based on the deduced amino acid sequence(s) was performed wherein the evolutionary relatedness of BtD enzyme with similar aromatic dioxygenases was determined. The results obtained in this study indicated that this enzyme has probably undergone evolutionary divergence which largely corroborated with the taxonomic ranks of the host microorganisms.

Keywords: Benzenetriol dioxygenase, p-Nitrophenol, Phylogenetic analysis

Full Text

The Full Text of this article is available as a PDF (822.7 KB).

Glossary

BtD

Benzenetriol dioxygenase enzyme

btd

Benzenetriol dioxygenase gene

PNP

p-nitrophenol

Contributor Information

Ulrich Krauss, Email: u.krauss@fz-juelich.de.

Michael Schlomann, Phone: 49 3731 39 3739, FAX: 49 3731 39 3012, Email: michael.schloemann@ioez.tu-freiberg.de.

Rakesh K. Jain, Phone: +91 / 172 / 2695215, FAX: +91 / 172 / 2695085, Email: rkj@imtech.res.in

References

  • 1.Watanabe K. Microorganisms relevant to bioremediation. Curr Opin Biotechnol. 2001;12:237–241. doi: 10.1016/S0958-1669(00)00205-6. [DOI] [PubMed] [Google Scholar]
  • 2.Dua M., Singh A., Sethunathan N., Johri A.K. Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol. 2002;59:143–152. doi: 10.1007/s00253-002-1024-6. [DOI] [PubMed] [Google Scholar]
  • 3.Timmis K.N., Pieper D.H. Bacteria designed for bioremediation. Trends Biotechnol. 1999;17:200–204. doi: 10.1016/S0167-7799(98)01295-5. [DOI] [PubMed] [Google Scholar]
  • 4.Watanabe K., Futamata H., Harayama S. Understanding the diversity in catabolic potential of microorganisms for the development of bioremediation strategies. Antonie Van Leeuwenhoek. 2002;81:655–663. doi: 10.1023/A:1020534328100. [DOI] [PubMed] [Google Scholar]
  • 5.Peres C.M., Agathos S.N. Biodegradation of nitroaromatic pollutants: from pathways to remediation. Biotechnol Annu Rev. 2000;6:197–220. doi: 10.1016/S1387-2656(00)06023-3. [DOI] [PubMed] [Google Scholar]
  • 6.Holliger C., Gaspard S., Glod G., Heijman C., Schumacher W., Schwarzenbach R.P., Vazquez F. Contaminated environments in the subsurface and bioremediation: organic contaminants. FEMS Microbiol Rev. 1997;20:517–523. doi: 10.1111/j.1574-6976.1997.tb00334.x. [DOI] [PubMed] [Google Scholar]
  • 7.Takeo M., Yasukawa T., Abe Y., Niihara S., Maeda Y., Negoro S. Cloning and characterization of a 4-nitrophenol hydroxylase gene cluster from Rhodococcus sp. PN1. J Biosci Bioeng. 2003;95:139–145. [PubMed] [Google Scholar]
  • 8.Hofmann K.W., Knackmuss H.J., Heiss G. Nitrite elimination and hydrolytic ring cleavage in 2,4,6-trinitrophenol (picric acid) degradation. Appl Environ Microbiol. 2004;70:2854–2860. doi: 10.1128/AEM.70.5.2854-2860.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Nordin K., Unell M., Jansson J.K. Novel 4-chlorophenol degradation gene cluster and degradation route via hydroxyquinol in Arthrobacter chlorophenolicus A6. Appl Environ Microbiol. 2005;71:6538–6544. doi: 10.1128/AEM.71.11.6538-6544.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Junca H., Pieper D.H. Amplified functional DNA restriction analysis to determine catechol 2,3-dioxygenase gene diversity in soil bacteria. J Microbiol Methods. 2003;55:697–708. doi: 10.1016/S0167-7012(03)00214-8. [DOI] [PubMed] [Google Scholar]
  • 11.Kitagawa W., Kimura N., Kamagata Y. A novel p-nitrophenol degradation gene cluster from a gram-positive bacterium, Rhodococcus opacus SAO101. J Bacteriol. 2004;186:4894–4902. doi: 10.1128/JB.186.15.4894-4902.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Spain J.C. Biodegradation of nitroaromatic compounds. Annu Rev Microbiol. 1995;49:523–555. doi: 10.1146/annurev.mi.49.100195.002515. [DOI] [PubMed] [Google Scholar]
  • 13.Chauhan A., Chakraborti A.K., Jain R.K. Plasmid-encoded degradation of p-nitrophenol and 4-nitrocatechol by Arthrobacter protophormiae. Biochem Biophys Res Commun. 2000;270:733–740. doi: 10.1006/bbrc.2000.2500. [DOI] [PubMed] [Google Scholar]
  • 14.Meulenberg R., Pepi M., Bont J.A. Degradation of 3-nitrophenol by Pseudomonas putida B2 occurs via 1,2,4-benzenetriol. Biodegradation. 1996;7:303–311. doi: 10.1007/BF00115744. [DOI] [PubMed] [Google Scholar]
  • 15.Armengaud J., Timmis K.N., Wittich R.M. A functional 4-hydroxysalicylate/hydroxyquinol degradative pathway gene cluster is linked to the initial dibenzo-p-dioxin pathway genes in Sphingomonas sp. strain RW1. J Bacteriol. 1999;181:3452–3461. doi: 10.1128/jb.181.11.3452-3461.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Samanta S.K., Chakraborti A.K., Jain R.K. Degradation of phenanthrene by different bacteria: evidence for novel transformation sequences involving the formation of 1-naphthol. Appl Microbiol Biotechnol. 1999;53:98–107. doi: 10.1007/s002530051621. [DOI] [PubMed] [Google Scholar]
  • 17.Samanta S.K., Bhushan B., Chauhan A., Jain R.K. Chemotaxis of a Ralstonia sp. SJ98 toward different nitroaromatic compounds and their degradation. Biochem Biophys Res Commun. 2000;269:117–123. doi: 10.1006/bbrc.2000.2204. [DOI] [PubMed] [Google Scholar]
  • 18.Ghosh A., Paul D., Prakash D., Mayilraj S., Jain R.K. Rhodococcus imtechensis sp. nov., a nitrophenol-degrading actinomycete. Int J Syst Evol Microbiol. 2006;56:1965–1969. doi: 10.1099/ijs.0.63939-0. [DOI] [PubMed] [Google Scholar]
  • 19.Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997;25:4876–82. doi: 10.1093/nar/25.24.4876. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Retief J.D. Phylogenetic analysis using PHYLIP. Methods Mol Biol. 2000;132:243–258. doi: 10.1385/1-59259-192-2:243. [DOI] [PubMed] [Google Scholar]
  • 22.Siew J.P., Khan A.M., Tan P.T., Koh J.L., Seah S.H., Koo C.Y., Chai S.C., Armugam A., Brusic V., Jeyaseelan K. Systematic analysis of snake neurotoxins’ functional classification using a data warehousing approach. Bioinformatics. 2004;20:3466–3480. doi: 10.1093/bioinformatics/bth430. [DOI] [PubMed] [Google Scholar]
  • 23.Felsenstein J. Estimation of hominoid phylogeny from a DNA hybridization data set. J Mol Evol. 1987;26:123–131. doi: 10.1007/BF02111286. [DOI] [PubMed] [Google Scholar]
  • 24.Felsenstein J. The troubled growth of statistical phylogenetics. Syst Biol. 2001;50:465–467. doi: 10.1080/10635150119297. [DOI] [PubMed] [Google Scholar]
  • 25.Peer Y., Wachter R. TREECON: a software package for the construction and drawing of evolutionary trees. Comput Appl Biosci. 1993;9:177–182. doi: 10.1093/bioinformatics/9.2.177. [DOI] [PubMed] [Google Scholar]
  • 26.Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]
  • 27.Wilson M.S., Herrick J.B., Jeon C.O., Hinman D.E., Madsen E.L. Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene-degrading guilds from adjacent soil environments. Appl Environ Microbiol. 2003;69:2172–2181. doi: 10.1128/AEM.69.4.2172-2181.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Devers M., Henry S., Hartmann A., Martin-Laurent F. Horizontal gene transfer of atrazine-degrading genes (atz) from Agrobacterium tumefaciens St96-4 pADP1::Tn5 to bacteria of maize-cultivated soil. Pest Manag Sci. 2005;61:870–880. doi: 10.1002/ps.1098. [DOI] [PubMed] [Google Scholar]
  • 29.Daubaras D.L., Saido K., Chakrabarty A.M. Purification of hydroxyquinol 1,2-dioxygenase and maleylacetate reductase: the lower pathway of 2,4,5-trichlorophenoxyacetic acid metabolism by Burkholderia cepacia AC1100. Appl Environ Microbiol. 1996;62:4276–4279. doi: 10.1128/aem.62.11.4276-4279.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Hatta T., Nakano O., Imai N., Takizawa N., Kiyohara H. Cloning and sequence analysis of hydroxyquinol 1,2-dioxygenase gene in 2,4,6-trichlorophenol-degrading Ralstonia pickettii DTP0602 and characterization of its product. J Biosci Bioeng. 1999;87:267–272. doi: 10.1016/S1389-1723(99)80030-9. [DOI] [PubMed] [Google Scholar]
  • 31.Murakami S., Okuno T., Matsumura E., Takenaka S., Shinke R., Aoki K. Cloning of a gene encoding hydroxyquinol 1,2-dioxygenase that catalyzes both intradiol and extradiol ring cleavage of catechol. Biosci Biotechnol Biochem. 1999;63:859–865. doi: 10.1271/bbb.63.859. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES