Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2008 Jul 27;48(2):252–266. doi: 10.1007/s12088-008-0036-z

Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405

Carlo R Carere 1, Vipin Kalia 2, Richard Sparling 3, Nazim Cicek 1, David B Levin 1,
PMCID: PMC3450175  PMID: 23100718

Abstract

Clostridium thermocellum is a gram-positive, acetogenic, thermophilic, anaerobic bacterium that degrades cellulose and carries out mixed product fermentation, catabolising cellulose to acetate, lactate, and ethanol under various growth conditions, with the concomitant release of H2 and CO2. Very little is known about the factors that determine metabolic fluxes influencing H2 synthesis in anaerobic, cellulolytic bacteria like C. thermocellum. We have begun to investigate the relationships between genome content, gene expression, and end-product synthesis in C. thermocellum cultured under different conditions. Using bioinformatics tools and the complete C. thermocellum 27405 genome sequence, we identified genes encoding key enzymes in pyruvate catabolism and H2-synthesis pathways, and have confirmed transcription of these genes throughout growth on α-cellulose by reverse transcriptase polymerase chain reaction. Bioinformatic analyses revealed two putative lactate dehydrogenases, one pyruvate formate lyase, four pyruvate:formate lyase activating enzymes, and at least three putative pyruvate:ferredoxin oxidoreductase (POR) or POR-like enzymes. Our data suggests that hydrogen may be generated through the action of either a Ferredoxin (Fd)-dependent NiFe hydrogenase, often referred to as “Energy-converting Hydrogenases”, or via NAD(P)Hdependent Fe-only hydrogenases which would permit H2 production from NADH generated during the glyceraldehyde-3-phosphate dehydrogenase reaction. Furthermore, our findings show the presence of a gene cluster putatively encoding a membrane integral NADH:Fd oxidoreductase, suggesting a possible mechanism in which electrons could be transferred between NADH and ferredoxin. The elucidation of pyruvate catabolism pathways and mechanisms of H2 synthesis is the first step in developing strategies to increase hydrogen yields from biomass. Our studies have outlined the likely pathways leading to hydrogen synthesis in C. thermocellum strain 27405, but the actual functional roles of these gene products during pyruvate catabolism and in H 2 synthesis remain to be elucidated, and will need to be confirmed using both expression analysis and protein characterization.

Keywords: Clostridium thermocellum, Fermentation, Cellulose, Hydrogen, Pyruvate catabolism

Full Text

The Full Text of this article is available as a PDF (1.5 MB).

Contributor Information

Carlo R. Carere, Email: umcarerc@cc.umanitoba.ca

Vipin Kalia, Email: vckalia@igib.res.in, Email: vc_kalia@yahoo.co.in.

Richard Sparling, Email: sparlng@cc.umanitoba.ca.

Nazim Cicek, Email: nazim_cicek@cc.umantiboa.ca.

David B. Levin, Email: levindb@cc.umanitoba.ca

References

  • 1.Lamed R., Zeikus G. Ethanol production by thermophilic bacteria: Relationship between fermentation product yields of and catabolic enzyme activities in Clostridium thermocellum and Thermoanerobium brockii. J Bacteriol. 1980;144:569–578. doi: 10.1128/jb.144.2.569-578.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Lynd L.R., Grethlein H.G. Hydrolysis of dilute acid pretreated hardwood and purified microcyrstalline cellulose by cell-free broth from Clostridium thermocellum. Biotechnol Bioeng. 1987;29:92–100. doi: 10.1002/bit.260290114. [DOI] [PubMed] [Google Scholar]
  • 3.Ng T.K., Weimer P.J., Zeikus J.G. Cellulolytic and physiological properties of Clostridium thermocellum. Arch Microbiol. 1977;114:1–7. doi: 10.1007/BF00429622. [DOI] [PubMed] [Google Scholar]
  • 4.Patni N.J., Alexander J.K. Catabolism of fructose and mannitol by Clostridium thermocellum: Presence of phosphoenolpyruvate:fructose phosphotransferase, fructose-1-phosphate kinase, phosphoenol-pyruvate:mannitol phosphotransferase, and mannitol-1-phosphate dehydrogenase in cell extracts. J Bacteriol. 1971;105:226–231. doi: 10.1128/jb.105.1.226-231.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Patni N.J., Alexander J.K. Utilization of glucose by Clostridium thermocellum: Presence of glucokinase and other glycolytic enzymes in cell extracts. J Bacteriol. 1971;105:220–225. doi: 10.1128/jb.105.1.220-225.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Thauer R.K., Jungermann K.A., Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977;41:100–180. doi: 10.1128/br.41.1.100-180.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Sparling R., Islam R., Cicek N., Carere C., Chow H., Levin D.B. Formate synthesis by Clostridium thermocellum during anaerobic fermentation. Can J Microbiol. 2006;52:681–688. doi: 10.1139/W06-021. [DOI] [PubMed] [Google Scholar]
  • 8.Demain A.L., Newcomb M., Wu J.H.D. Cellulase, Clostridia, and ethanol. Microbiol Mol Biol Rev. 2005;69:124–154. doi: 10.1128/MMBR.69.1.124-154.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Lynd L.R., Weimer P.J., Zyl W.H., Pretorius I.S. Microbial cellulose utilization: Fundamentals and biotechnology. Micro Mol Biol Rev. 2002;66:506–577. doi: 10.1128/MMBR.66.3.506-577.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Lynd L.R., Grethlein H.G., Wolkin R.H. Fermentation of cellulose substrates in batch and continuous culture by Clostridium thermocellum. App Environ Microbiol. 1989;55:3131–3139. doi: 10.1128/aem.55.12.3131-3139.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Islam R., Cicek N., Sparling R., Levin D.B. Effect of substrate loading on hydrogen production during anaerobic fermentation by Clostridium thermocellum 27405. Appl Microbiol Biotechnol. 2006;72(3):576–583. doi: 10.1007/s00253-006-0316-7. [DOI] [PubMed] [Google Scholar]
  • 12.Levin D.B., Sparling R., Islam R., Cicek N. Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrogen Energy. 2006;31(11):1496–1503. doi: 10.1016/j.ijhydene.2006.06.015. [DOI] [Google Scholar]
  • 13.Charon M.H., Volbeda A., Chabriére E., Pieulle L., Fontecilla-Camps J.C. Structure and electron transfer mechanism of pyruvate:ferredodin oxidoreductase. Curr Opin Struct Biol. 1999;9:663–669. doi: 10.1016/S0959-440X(99)00027-5. [DOI] [PubMed] [Google Scholar]
  • 14.Hallenbeck P.C., Benemann J.R. Biological hydrogen production; fundamentals and limiting processes. Int J Hydrogen Energy. 2002;27:1185–1193. doi: 10.1016/S0360-3199(02)00131-3. [DOI] [Google Scholar]
  • 15.Hallenbeck P.C. Fundamentals of the fermentative production of hydrogen. Water Sci Technol. 2005;52:21–29. [PubMed] [Google Scholar]
  • 16.Sauter M., Sawers G. Transcriptional analysis of the gene encoding Pyruvate formate lyase activating enzyme of Escherichia coli. Mol Microbiol. 1990;4:355–363. doi: 10.1111/j.1365-2958.1990.tb00603.x. [DOI] [PubMed] [Google Scholar]
  • 17.Bradford M.M. A rapid and sensitive method for the estimation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  • 18.Sirko A., Zehelein E., Freundlich M., Sawers G. Integration host factor is required for anaerobic pyruvate induction of pfl operon expression in Escherichia coli. J Bacteriol. 1993;175:5769–5777. doi: 10.1128/jb.175.18.5769-5777.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Özkan M., Ylmaz E., Lynd L.R., Özcengiz G. Cloning and Expression of the Clostridium thermocellum L-lactate Dehydrogenase in Escherichia coli and Enzyme Characterization. Can J Microbiol. 2004;50:845–851. doi: 10.1139/w04-071. [DOI] [PubMed] [Google Scholar]
  • 20.Weidner G., Sawers G. Molecular characterization of the genes encoding pyruvate formate-lyase and its activating enzyme of Clostridium pasteurianum. J Bacteriol. 1996;178:2440–2444. doi: 10.1128/jb.178.8.2440-2444.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Meinecke B., Bertram J., Gottschalk G. Purification and characterization of the pyruvate-ferredoxin oxidoreductase of Clostridium acetobutylicum. Arch Microbiol. 1989;152:244–250. doi: 10.1007/BF00409658. [DOI] [PubMed] [Google Scholar]
  • 22.Desai SG, Steven DM, Prince HL, Guerinot ML, Lynd LH (1999) Clostridium thermocellum hydrogenase 1. GenBank accession # Q9XC55. Direct Submission
  • 23.Soboh B., Linder D., Hedderich R. A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology. 2004;150:2451–2463. doi: 10.1099/mic.0.27159-0. [DOI] [PubMed] [Google Scholar]
  • 24.Vanoni M.A., Verzotti E., Zanetti G., Curti B. Properties of the recombinant b subunit of glutamate synthase. European J Biochem. 1996;236:937–946. doi: 10.1111/j.1432-1033.1996.00937.x. [DOI] [PubMed] [Google Scholar]
  • 25.Forzi L., Koch J., Guss A.M., Radosevich C.G., Metcalf W., Hedderich R. Assignment of the [4Fe-4S] clusters of Ech hydrogenase from Methanosarcina barkeri to individual subunits via the characterization of site-directed mutants. FEBS Journal. 2005;272:4741–4753. doi: 10.1111/j.1742-4658.2005.04889.x. [DOI] [PubMed] [Google Scholar]
  • 26.Bruggemann H., Baumer S., Fricke W.F., Wiezer A., Liesegang H., Decker I., Herzberg C., Martinez-Arias R., Merkl R., Henne A., Gottschalk G. The genome sequence of Clostridium tetani, the causative agent of tetanus disease. Proc Natl Acad Sci USA. 2003;100:1316–1321. doi: 10.1073/pnas.0335853100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Guedon E., Payot S., Desvaux M., Petitdemanger H. Carbon and electron flow in Clostridium cellulolyticum grown in chemostat culture on synthetic medium. J Bacteriol. 1999;181:3262–3269. doi: 10.1128/jb.181.10.3262-3269.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Dabrock B., Bahl H., Gottschalk G. Parameters affecting solvent production in Clostridium pasteurianum. Appl Environ Microbiol. 1992;58:1233–1239. doi: 10.1128/aem.58.4.1233-1239.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Viles F., Silverman L. Determination of starch and cellulose. Anal Chem. 1949;21:950–953. doi: 10.1021/ac60032a019. [DOI] [Google Scholar]
  • 30.Thauer R.K., Kirchniawy F.H., Jungermann K.A. Properties and function of the pyruvate-formate-lyase reaction in clostridiae. Eur J Biochem. 1972;23:282–290. doi: 10.1111/j.1432-1033.1972.tb01837.x. [DOI] [PubMed] [Google Scholar]
  • 31.Vasconcelos I., Girbal L., Soucaille P. Regulation of carbon and electron flow in Clostridium acetobutyliticum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. J Bacteriol. 1994;176(5):1443–1450. doi: 10.1128/jb.176.5.1443-1450.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Kletzin A., Adams M.W.W. Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosis and pyruvate ferredoxin oxidoreductase from Thermotoga maritime. J Bacteriol. 1996;178:248–257. doi: 10.1128/jb.178.1.248-257.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Kunow J., Linder D., Thauer R.K. Pyruvate:ferredoxin oxidoreductase from sulfate reducing Archaeoglubus fulgidis: molecular composition, catalytic properties and sequence alignments. Arch Microbiol. 1995;63:21–28. doi: 10.1007/BF00262199. [DOI] [PubMed] [Google Scholar]
  • 34.Hughes N.J., Chalk P.A., Clayton C.L., Kelly D.J. Identification of carboxylation enzymes and characterization of a novel four-subunit Pyruvate:Flavodoxin Oxidoreductase from Helicobacter pylori. J Bacteriol. 1995;177(14):3953–3959. doi: 10.1128/jb.177.14.3953-3959.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Peters J.W., Lanzilotta W.N., Lemon B.J., Seefeldt L.C. X-ray crystal structure of the Fe-Only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 Angstrom resolution. Science. 1998;282:1853–1858. doi: 10.1126/science.282.5395.1853. [DOI] [PubMed] [Google Scholar]
  • 36.Vignais P.M., Billoud B., Meyer J. Classification and phylogeny of hydrogenases. FEMS Microbiol Reviews. 2001;25:455–501. doi: 10.1111/j.1574-6976.2001.tb00587.x. [DOI] [PubMed] [Google Scholar]
  • 37.Jungermann K., Thauer R.K., Leimenstoll G., Decker K. Function of reduced pyridine nucleotide-ferredoxin oxidoreductases in saccharolytic Clostridia. Biochimica et Biophysica Acta — Bioenergetics. 1973;305:268–280. doi: 10.1016/0005-2728(73)90175-8. [DOI] [PubMed] [Google Scholar]
  • 38.Chen Y.P., Yoch D.C. Isolation, characterization and biological activity of ferredoxin-NAD+ reductase from the methane oxidizer Methylosinus trichosporium OB3b. J Bacteriol. 1989;171:5012–5016. doi: 10.1128/jb.171.9.5012-5016.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 39.Nakamura Y., Kaneko T., Sato S., Ikeuchi M., Katoh H., Sasamoto S., Watanabe A., Iriguchi M., Kawashima K., Kimura T., Kishida Y., Kiyokawa C., Kohara M., Matsumoto M., Matsuno A., Nakazaki N., Shimpo S., Sugimoto M., Takeuchi C., Yamada M., Tabata S. Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res. 2002;9(4):123–130. doi: 10.1093/dnares/9.4.123. [DOI] [PubMed] [Google Scholar]
  • 40.Desai S.G., Guerinot M.L., Lynd L.R. Cloning of L-lactate dehydrogenase and elimination of lactic acid production via gene knockout in Thermoanaerobacterium saccharolyticum JW/SL-YS485. Appl Microbiol Biotechnol. 2004;65(5):600–605. doi: 10.1007/s00253-004-1575-9. [DOI] [PubMed] [Google Scholar]
  • 41.Nolling J., Breton G., Omelchenko M.V., Markarova K.S., Zeng Q., Gibson R., Lee H.M., Dubois J., Qiu D., Hitti J., Wolf Y.I., Tatusov R.L., Sabathe F., Doucette-Stamm L., Soucaille P., Daly M.J., Bennett G.N., Koonin E.V., Smith D.R. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. J Bacteriol. 2001;183(16):4823–4838. doi: 10.1128/JB.183.16.4823-4838.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Myers G.S., Rasko D.A., Cheung J.K., Ravel J., Seshadri R., De-Boy R.T., Ren Q., Varga J., Awad M.M., Brinkac L.M., Daugherty S.C., Haft D.H., Dodson R.J., Madupu R., Nelson W.C., Rosovitz M.J., Sullivan S.A., Khouri H., Dimitrov G.I., Watkins K.L., Mulligan S., Benton J., Radune D., Fisher D.J., Atkins H.S., Hiscox T., Jost B.H., Billington S.J., Songer J.G., McClane B.A., Titball R.W., Rood J.I., Melville S.B., Paulsen I.T. Skewed genomic variability in strains of the toxigenic bacterial pathogen, Clostridium perfringens. Genome Res. 2006;16(8):1031–1040. doi: 10.1101/gr.5238106. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES