Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2008 Jun 13;48(2):156–162. doi: 10.1007/s12088-008-0025-2

Microbial genomics: rhetoric or reality?

Kishore R Sakharkar 1, Vincent T K Chow 1,
PMCID: PMC3450178  PMID: 23100710

Abstract

The availability of complete genome sequences of many bacterial species is facilitating numerous computational approaches for understanding bacterial genomes. One of the major incentives behind the genome sequencing of many pathogenic bacteria is the desire to better understand their diversity and to develop new approaches for controlling human diseases caused by these microorganisms. This task has become even more urgent with the rapid evolution of antibiotic resistance among many bacterial pathogens. Novel drug targets are required in order to design new antimicrobials against antibiotic-resistant pathogens. The complete genome sequences of an ever increasing number of pathogenic microbes constitute an invaluable resource and provide lead information on potential drug targets. This review focuses on in silico analyses of microbial genomes, their host-specific adaptations, with specific reference to genome architecture, design, evolution, and trends in computational identification of microbial drug targets. These trends underscore the utility of genomic data for systematic in silico drug target identification in the post-genomic era.

Keywords: Microbial genomics, In silico analyses of microbial genomes, Host-specific adaptation, Genome evolution, Potential antibacterial drug targets, Infectomics

Full Text

The Full Text of this article is available as a PDF (891.2 KB).

References

  • 1.Fraser-Liggett C.M. Insights on biology and evolution from microbial genome sequencing. Genome Res. 2005;15:1603–1610. doi: 10.1101/gr.3724205. [DOI] [PubMed] [Google Scholar]
  • 2.Binnewies T.T., Motro Y., Hallin P.F., Lund O., Dunn D., La T., Hampson D.J., Bellgard M., Wassenaar T.M., Ussery D.W. Ten years of bacterial genome sequencing: comparative-genomics-based discoveries. Funct Integr Genomics. 2006;6:165–185. doi: 10.1007/s10142-006-0027-2. [DOI] [PubMed] [Google Scholar]
  • 3.Raskin D.M., Seshadri R., Pukatzki S.U., Mekalanos J.J. Bacterial genomics and pathogen evolution. Cell. 2006;l24:703–714. doi: 10.1016/j.cell.2006.02.002. [DOI] [PubMed] [Google Scholar]
  • 4.Barker J.J. Antibacterial drug discovery and structurebased design. Drug Discov Today. 2006;11:391–404. doi: 10.1016/j.drudis.2006.03.001. [DOI] [PubMed] [Google Scholar]
  • 5.Casjens S. The diverse and dynamic structure of bacterial genomes. Annu Rev Genet. 1998;32:339–377. doi: 10.1146/annurev.genet.32.1.339. [DOI] [PubMed] [Google Scholar]
  • 6.Fraser C.M., Casjens S., Huang W.M., Sutton G.G., Clayton R., Lathigra R., White O., Ketchum K.A., Dodson R., Hickey E.K., Gwinn M., Dougherty B., Tomb J.F., Fleischmann R.D., Richardson D., Peterson J., Kerlavage A.R., Quackenbush J., Salzberg S., Hanson M., Vugt R., Palmer N., Adams M.D., Gocayne J., Weidman J., Utterback T., Watthey L., McDonald L., Artiach P., Bowman C., Garland S., Fujii C., Cotton M.D., Horst K., Roberts K., Hatch B., Smith H.O., Venter J.C. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997;390:580–586. doi: 10.1038/37551. [DOI] [PubMed] [Google Scholar]
  • 7.Casjens S., Palmer N., Vugt R., Huang W.M., Stevenson B., Rosa P., Lathigra R., Sutton G., Peterson J., Dodson R.J., Haft D., Hickey E., Gwinn M., White O., Fraser C.M. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol. 2000;35:490–516. doi: 10.1046/j.1365-2958.2000.01698.x. [DOI] [PubMed] [Google Scholar]
  • 8.Fraser C.M., Gocayne J.D., White O., Adams M.D., Clayton R.A., Fleischmann R.D., Bult C.J., Kerlavage A.R., Sutton G., Kelley J.M., Kerlavage A.R., Sutton G., Kelley J.M., Fritchman R.D., Weidman J.F., Small K.V., Sandusky M., Fuhrmann J., Nguyen D., Utterback T.R., Saudek D.M., Phillips C.A., Merrick J.M., Tomb J.F., Dougherty B.A., Bott K.F., Hu P.C., Lucier T.S., Peterson S.N., Smith H.O., Hutchison C.A., Venter J.C. The minimal gene complement of Mycoplasma genitalium. Science. 1995;270:397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
  • 9.Andersson J.O., Andersson S.G. Insights into the evolutionary process of genome degradation. Curr Opin Genet Dev. 1999;9:664–671. doi: 10.1016/S0959-437X(99)00024-6. [DOI] [PubMed] [Google Scholar]
  • 10.Andersson J.O., Andersson S.G. Genome degradation is an ongoing process in Rickettsia. Mol Biol Evol. 1999;16:1178–1191. doi: 10.1093/oxfordjournals.molbev.a026208. [DOI] [PubMed] [Google Scholar]
  • 11.Zomorodipour A., Andersson S.G. Obligate intracellular parasites: Rickettsia prowazekii and Chlamydia trachomatis. FEBS Lett. 1999;452:11–15. doi: 10.1016/S0014-5793(99)00563-3. [DOI] [PubMed] [Google Scholar]
  • 12.Sakharkar K.R., Dhar P.K., Chow V.T. Genome reduction in prokaryotic obligatory intracellular parasites of humans: a comparative analysis. Int J Syst Evol Microbiol. 2004;54:1937–1941. doi: 10.1099/ijs.0.63090-0. [DOI] [PubMed] [Google Scholar]
  • 13.Andersson J.O., Andersson S.G. Pseudogenes, junk DNA, and the dynamics of Rickettsia genomes. Mol Biol Evol. 2001;18:829–839. doi: 10.1093/oxfordjournals.molbev.a003864. [DOI] [PubMed] [Google Scholar]
  • 14.Andersson S.G., Kurland C.G. Reductive evolution of resident genomes. Trends Microbiol. 1998;6:263–268. doi: 10.1016/S0966-842X(98)01312-2. [DOI] [PubMed] [Google Scholar]
  • 15.Andersson S.G., Zomorodipour A., Andersson J.O., Sicheritz-Ponten T., Alsmark U.C., Podowski R.M., Naslund A.K., Eriksson A.S., Winkler H.H., Kurland C.G. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature. 1998;396:133–140. doi: 10.1038/24094. [DOI] [PubMed] [Google Scholar]
  • 16.Lawrence J.G., Hendrix R.W., Casjens S. Where are the pseudogenes in bacterial genomes? Trends Microbiol. 2001;9:535–540. doi: 10.1016/S0966-842X(01)02198-9. [DOI] [PubMed] [Google Scholar]
  • 17.Tamas I., Klasson L.M., Sandstrom J.P., Andersson S.G. Mutualists and parasites: how to paint yourself into a (metabolic) corner. FEBS Lett. 2001;498:135–139. doi: 10.1016/S0014-5793(01)02459-0. [DOI] [PubMed] [Google Scholar]
  • 18.Frank A.C., Amiri H., Andersson S.G. Genome deterioration: loss of repeated sequences and accumulation of junk DNA. Genetica. 2002;115:1–12. doi: 10.1023/A:1016064511533. [DOI] [PubMed] [Google Scholar]
  • 19.Rosamond J., Allsop A. Harnessing the power of the genome in the search for new antibiotics. Science. 2000;287:1973–1976. doi: 10.1126/science.287.5460.1973. [DOI] [PubMed] [Google Scholar]
  • 20.Sakharkar K.R., Sakharkar M.K., Chow V.T. A novel genomics approach for the identifi cation of drug targets in pathogens, with special reference to Pseudomonas aeruginosa. In Silico Biol. 2004;4:355–360. [PubMed] [Google Scholar]
  • 21.Kobayashi K., Ehrlich S.D., Albertini A., Amati G., Andersen K.K., Arnaud M., Asai K., Ashikaga S., Aymerich S., Bessieres P., Boland F., Brignell S.C., Bron S., Bunai K., Chapuis J., Christiansen L.C., Danchin A., Debarbouille M., Dervyn, Deuerling E., Devine K., Devine S.K., Dreesen O., Errington J., Fillinger S., Foster S.J., Fujita Y., Galizzi A., Gardan R., Eschevins C., Fukushima T., Haga, Harwood C.R., Hecker M., Hosoya D., Hullo M.F., Kakeshita H., Karamata D., Kasahara Y., Kawamura F., Koga K., Koski P., Kuwana R., Imamura D., Ishimaru M., Ishikawa S., Ishio I., Coq D., Masson A., Mauel C., Meima R., Mellado R.P., Moir A., Moriya S., Nagakawa E., Nanamiya H., Nakai S., Nygaard P., Ogura M., Ohanan T., O’Reilly M., O’Rourke M., Pragai Z., Pooley M., Rapoport G., Rawlins J.P., Rivas L.A., Rivolta C., Sadaie A., Sadaie Y., Sarvas M., Sato T., Saxild H.H., Scanlan E., Schumann W., Seegers J.F., Sekiguchi J., Sekowska A., Seror S.J., Simon M., Stragier P., Studer R., Takamatsu H., Tanaka T., Takeuchi M., Thomaides H.B., Vagner V., Dijl M., Watabe K., Wipat A., Yamamoto H., Yamamoto M., Yamamoto Y., Yamane K., Yata K., Yoshida K., Yoshikawa H., Zuber U., Ogasawara N. Essential Bacillus subtilis genes. Proc Natl Acad Sci USA. 2003;100:4678–4683. doi: 10.1073/pnas.0730515100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Itaya M. An estimation of minimal genome size required for life. FEBS Lett. 1995;362:257–260. doi: 10.1016/0014-5793(95)00233-Y. [DOI] [PubMed] [Google Scholar]
  • 23.Tatusov R.L., Koonin E.V., Lipman D.J. A genomic perspective on protein families. Science. 1997;278:631–637. doi: 10.1126/science.278.5338.631. [DOI] [PubMed] [Google Scholar]
  • 24.Mushegian A.R., Koonin E.V. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc Natl Acad Sci USA. 1996;93:10268–10273. doi: 10.1073/pnas.93.19.10268. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Huynen M., Diaz-Lazcoz Y., Bork P. Differential display of genomes. Trends Genet. 1997;13:389–390. doi: 10.1016/S0168-9525(97)01255-9. [DOI] [PubMed] [Google Scholar]
  • 26.Huynen M., Dandekar T., Bork P. Differential genome analysis applied to the species-specific features of Helicobacter pylori. FEBS Lett. 1998;426:1–5. doi: 10.1016/S0014-5793(98)00276-2. [DOI] [PubMed] [Google Scholar]
  • 27.Galperin M.Y., Koonin E.V. Searching for drug targets in microbial genomes. Curr Opin Biotechnol. 1999;10:571–578. doi: 10.1016/S0958-1669(99)00035-X. [DOI] [PubMed] [Google Scholar]
  • 28.Sakharkar K.R., Sakharkar M.K., Chow V.T. Gene fusion in Helicobacter pylori: making the ends meet. Antonie Van Leeuwenhoek. 2006;89:169–180. doi: 10.1007/s10482-005-9021-2. [DOI] [PubMed] [Google Scholar]
  • 29.Lim W.C., Chow V.T. Gene expression profiles of U937 human macrophages exposed to Chlamydophila pneumoniae and/or low density lipoprotein in fi ve study models using differential display and real-time RT-PCR. Biochimie. 2006;88:367–377. doi: 10.1016/j.biochi.2005.11.001. [DOI] [PubMed] [Google Scholar]
  • 30.Payne D.J., Gwynn M.N., Holmes D.J., Pompliano D.L. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov. 2007;6:29–40. doi: 10.1038/nrd2201. [DOI] [PubMed] [Google Scholar]
  • 31.Ward N., Fraser C.M. How genomics has affected the concept of microbiology. Curr Opin Microbiol. 2005;8:564–571. doi: 10.1016/j.mib.2005.08.011. [DOI] [PubMed] [Google Scholar]
  • 32.Fraser C.M., Rappuoli R. Application of microbial genomic science to advanced therapeutics. Annu Rev Med. 2005;56:459–474. doi: 10.1146/annurev.med.56.062904.144853. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES