Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2008 Jun 13;48(2):274–278. doi: 10.1007/s12088-008-0026-1

Strain improvement of Aspergillus niger for the enhanced production of asperenone

C Chidananda 1, C Mohan Kumar 1, A P Sattur 1,
PMCID: PMC3450179  PMID: 23100720

Abstract

The enhancement of production of asperenone (Fig. 1), an inhibitor of lipoxygenase and human platelet aggregation from Aspergillus niger CFTRI 1105, was achieved by UV and nitrous acid mutagenesis. Nitrous acid mutants exhibited increased inhibitor production when compared with UV irradiated mutants. I N 41 a first-generation nitrous acid mutant produced 5.1 fold increased asperenone over parent strain. Mutant II N 31 obtained by second-generation nitrous acid treatment produced 60.3 mg asperenone/g biomass, which was 131 fold increase when compared to first generated mutant I N 41 and 670 fold increase over the parent strain. This mutant was stable for several generations on production medium.

Keywords: Asperenone, Aspergillus niger, Mutagenesis, Nitrous acid, UV irradiation

Full Text

The Full Text of this article is available as a PDF (698.2 KB).

References

  • 1.Markwell J., Frakes L.G., Brott E.C., Osterman J., Wager F.W. Aspergillus niger mutants with increased glucose oxidase production. Appl Microbiol Biotechnol. 1989;30:166–169. doi: 10.1007/BF00264006. [DOI] [Google Scholar]
  • 2.Minjares-Carranco A., Trejo-Aguilar B.A., Auilar G., Viniegra-Gonzalez G. Physiological comparison between pectinase-producing mutants of Aspergillus niger adopted either to solid-state fermentation or submerged fermentation. Enzyme Microb Technol. 1997;21:25–31. doi: 10.1016/S0141-0229(96)00212-8. [DOI] [Google Scholar]
  • 3.Chelius M.K., Wodzinski R.J. Strain improvement of Aspergillus niger for phytase production. Appl Microbial Biotechnol. 1994;41:79–83. doi: 10.1007/BF00166085. [DOI] [Google Scholar]
  • 4.Mala J.G.S., Kamini N.R., Puvanakrishnan R. Strain improvement of Aspergillus niger for enhanced lipase production. J Gen Appl Microbiol. 2001;47:181–186. doi: 10.2323/jgam.47.181. [DOI] [PubMed] [Google Scholar]
  • 5.Fiedurek J., Gromada A. Screening and mutagenesis of molds for Improvement of the simultaneous production of catalase and glucose oxidase. Enzyme Microb Technol. 1997;20:344–347. doi: 10.1016/S0141-0229(96)00148-2. [DOI] [Google Scholar]
  • 6.Schewe T., Rapoport S.M., Kuhn H. Enzymology and physiology of Reticulocyte lipoxygenase: comparison with other lipoxygenase. Adv Enzymology. 1986;58:191–272. doi: 10.1002/9780470123041.ch6. [DOI] [PubMed] [Google Scholar]
  • 7.Prigge S.T., Boyington J.C., Faig M., Doctor K.S., Gaffney B.J., Amzel L.M. Structure and mechanism of lipoxygenases. Biochimie. 1997;79:629–636. doi: 10.1016/S0300-9084(97)83495-5. [DOI] [PubMed] [Google Scholar]
  • 8.Cornicelli J.A., Trivedi B.K. 15-lipoxygenase and its inhibition: a novel therapeutic target for vascular disease. Curr Pharm Res. 1999;5:11–20. [PubMed] [Google Scholar]
  • 9.Steinberg D. At last, direct evidence that lipoxygenase play a role in atherogenesis. J Clin Invest. 1999;31:831–883. doi: 10.1172/JCI7298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Rao K.C.S., Divakar S., Rao A.G.A., Karanth N.G., Sattur A.P. (a) Lipoxygenase inhibitor from Lactobacillus casei. Biotechnol Lett. 2002;24:511–513. doi: 10.1023/A:1016066617891. [DOI] [Google Scholar]
  • 11.Rao K.C.S., Divakar S., Rao A.G.A., Karanth N.G., Sattur A.P. (b) A lipoxygenase inhibitor from Aspergillus niger. Appl Microbiol Biotechnol. 2002;58:539–542. doi: 10.1007/s00253-001-0913-4. [DOI] [PubMed] [Google Scholar]
  • 12.Rao K.C.S., Divakar S., Babu K.N., Rao A.G.A., Karanth N.G., Sattur A.P. (c) Nigerloxin, a novel inhibitor of aldose reductase and lipoxygenase with free radical scavenging activity from Aspergillus niger CFR-W-105. J Antibiotic. 2002;55:789–793. doi: 10.7164/antibiotics.55.789. [DOI] [PubMed] [Google Scholar]
  • 13.Rao K.C.S., Divakar S., Rao A.G.A., Karanth N.G., Suneetha W.J., Krishnakantha T.P., Sattur A.P. (d) Asperenone: an inhibitor of 15-lipoxygenase and human platelet aggregation from Aspergillus niger. Biotechnol Lett. 2002;24:1967–1970. doi: 10.1023/A:1016066617891. [DOI] [Google Scholar]
  • 14.Jefferson W.E. (a) The isolation and characterization of asperenone, a new phenylpolyene from Aspergillus niger. Biochemistry. 1967;6:3470–3483. doi: 10.1021/bi00863a019. [DOI] [PubMed] [Google Scholar]
  • 15.Jefferson W.E. (b) Steroids and other factors influencing the accumilation of asperenone and fermentation acids by Aspergillus niger in replacement cultures. Biochemistry. 1967;6:3484–3488. doi: 10.1021/bi00863a020. [DOI] [PubMed] [Google Scholar]
  • 16.Schwartz L.J., Stauffer J.F. Three methods of assessing the mutagenic action of ultraviolet radiation on the fungus Emericellopsis glabra. Appl Microbiol. 1966;14:105–109. doi: 10.1128/am.14.1.105-109.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Rabache M., Neumann J., Lavollay J. Phenyl poylene D’ Aspergillus niger: Structure et properties de L’asperrubrol. Phytochemistry. 1974;13:637–642. doi: 10.1016/S0031-9422(00)91366-9. [DOI] [Google Scholar]
  • 18.Ayer W.A., Muir D.J., Chakravarty P. Phenolic and other metabolites of Phellinus pini, a fungus pathogenic to pine. Phytochemistry. 1996;42:1321–1324. doi: 10.1016/0031-9422(96)00125-2. [DOI] [Google Scholar]
  • 19.Cihangir N. Stimulation of gibberellic acid synthesis by Aspergillus niger in submerged culture using a precursor. World J Microbiol Biotechnol. 2002;18:727–729. doi: 10.1023/A:1020401507706. [DOI] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES