Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2008 Jun 12;48(2):287–290. doi: 10.1007/s12088-008-0022-5

Variability in Halothiobacillus neapolitanus type strain cultures

Suneel Chhatre 1, Joaquin DeLeon 1, Benjamin Goldbaum 1, John Latham 1, Srikanth Panchalingala 1, Newton P Hilliard 1,
PMCID: PMC3450182  PMID: 23100722

Abstract

Numerous microbial species are reported to utilize oxidation and/or reduction of sulfur containing compounds in the energy producing portions of their metabolism Halothiobacillus neapolitanus cultures obtained from different commercial sources appear to display considerable variability in terms of growth rate, carbonate consumption and activity of individual enzymes.

Keywords: Halothiobacillus neapolitanus, Sulfur oxidation, Freeze-drying, Viability

Full Text

The Full Text of this article is available as a PDF (626.9 KB).

References

  • 1.Taylor B.F., Hoare D.S., Hoare S.L. Thiobacillus denitrificans as an obligate chemolithotroph. Isolation and growth studies. Arch Mikrobiol. 1971;78(3):193–204. doi: 10.1007/BF00424893. [DOI] [PubMed] [Google Scholar]
  • 2.Kuenen J.G., Beudeker R.F. Microbiology of thiobacilli and other sulfur-oxidizing autotrophs, mixotrophs and heterotrophs. Philo Trans R Soc Lond B Biol Sci. 1982;298(1093):473–497. doi: 10.1098/rstb.1982.0093. [DOI] [PubMed] [Google Scholar]
  • 3.Beudeker R.F., Gottschal J.C., Kuenen J.G. Reactivity versus flexibility in thiobacilli. Antonie Van Leeuwenhoek. 1982;48(1):39–51. doi: 10.1007/BF00399485. [DOI] [PubMed] [Google Scholar]
  • 4.Hooper A.B., Dispirito A.A. In Bacteria Which Grow on Simple Reductants, Generation of a Proton Gradient Involves Extracytoplasmic Oxidation of Substrate. Micro Rev. 1985;49(2):140–157. doi: 10.1128/mr.49.2.140-157.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Friedrich C.G., Dagmar R., Bardischewsky F., Quentmeir A., Fischer J. Oxidation of Reduced Inorganic Sulfur Compounds by Bacteria: Emergence of a Common Mechanism? Appl Environ Micro. 2001;67(7):2873–2882. doi: 10.1128/AEM.67.7.2873-2882.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Friedrich C.G., Bardischewsky F., Dagmar R., Quentmeir A., Fischer J. Prokaryotic Sulfur Oxidation. Curr Opinion in Micro. 2005;8:253–259. doi: 10.1016/j.mib.2005.04.005. [DOI] [PubMed] [Google Scholar]
  • 7.Masau R.J.Y., Oh J.K., Suzuki I. Mechanism of oxidation of inorganic sulfur compounds by thiosulfate-grown Thiobacillus thiooxidans. Can J Microbiol. 2001;47:348–358. doi: 10.1139/cjm-47-4-348. [DOI] [PubMed] [Google Scholar]
  • 8.Muller F.H., Bandeiras T.M., Urich T., Teixeira M., Gomes C.M., Kletzin A. Coupling of the pathway of sulfur oxidation to dioxygen reduction: characterization of a novel membrane-bound thiosulphate:quinone oxidoreductase. Molecular Microbiology. 2004;53(4):1147–1160. doi: 10.1111/j.1365-2958.2004.04193.x. [DOI] [PubMed] [Google Scholar]
  • 9.Kappler U., Friedrich C.G., Truper H.G., Dahl C. Evidence for two pathways of thiosulfate oxidation in Starkeya novella (formerly Thiobacillus novellas) Arch Microbiol. 2001;175(2):102–111. doi: 10.1007/s002030000241. [DOI] [PubMed] [Google Scholar]
  • 10.Friedrich C.G., Quentmeier A., Bardischewsky F., Rother D., Kraft R., Kostka S., Prinz H. Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol. 2000;182(17):4677–4687. doi: 10.1128/JB.182.17.4677-4687.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Rother D., Henrich H.J., Quentmeier A., Bardischewsky F., Friedrich C.G. Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur-oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol. 2001;183(15):4499–4508. doi: 10.1128/JB.183.15.4499-4508.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Quentmeier A., Friedrich C.G. The cysteine residue of the SoxY protein as the active site of protein-bound sulfur oxidation of Paracoccus pantotrophus GB17. FEBS Lett. 2001;503(2–3):168–172. doi: 10.1016/S0014-5793(01)02727-2. [DOI] [PubMed] [Google Scholar]
  • 13.Dambe T., Quentmeier A., Rother D., Friedrich C.G., Scheidig A.J. Structure of the cytochrome complex XA of Paracoccus pantotrophus, a heme-enzyme initiating chemotrophic sulfur oxidation. J Struct Biol. 2005;152(3):229–234. doi: 10.1016/j.jsb.2005.09.002. [DOI] [PubMed] [Google Scholar]
  • 14.Sauve V., Bruno S., Berks B.C., Hemmings A.M. The Sox YZ complex carries sulfur cycle intermediates on a peptide swinging arm. J Biol Chem. 2007;282(32):23194–23204. doi: 10.1074/jbc.M701602200. [DOI] [PubMed] [Google Scholar]
  • 15.Reijerse E.J., Somerhalter M., Hellwig P., Quentmeier A., Rother D., Laurich C., Bothe E., Lubitz W., Friedrich C.G. The unusual redox centers of Sox XA, a novel c-type heme-enzyme essential for chemotrophic sulfur-oxidation of Paracoccus pantotrophus. Biochemistry. 2007;46(26):7804–7810. doi: 10.1021/bi7003526. [DOI] [PubMed] [Google Scholar]
  • 16.Trudinger P.A., Meyer T.E., Bartsch R.G., Kamen The major soluble cytochromes of the obligately aerobic sulfur bacterium, Thiobacillus neapolitanus. Arch Microbiol. 1985;141(4):273–278. doi: 10.1007/BF00428836. [DOI] [PubMed] [Google Scholar]
  • 17.Sklodowska A. Oxidation of thiosulphate and sulfite by Thiobacillus neapolitanus. Acta Microbiol Pol. 1985;34(3–4):271–276. [PubMed] [Google Scholar]
  • 18.Jones B.C., Hilliard N.P. A high-contrast fixative for ferricyanide reducing zymograms. Japanese J of Electrophoresis. 2004;48(4):181–184. doi: 10.2198/sbk.48.181. [DOI] [Google Scholar]
  • 19.Hempfling W.P., Vishniac W. Yield coefficients of Thiobacillus neapolitanus in continuous culture. J Bacteriol. 1967;93:874–878. doi: 10.1128/jb.93.3.874-878.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Bradford M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  • 21.Unpublished data
  • 22.Asano R., Sasak T., Nakai Y. Isolation and characterization of sulfur oxidizing bacteria from cattle manure compost. Anim Sci J. 2007;78:330–333. doi: 10.1111/j.1740-0929.2007.00443.x. [DOI] [Google Scholar]
  • 23.Wood A.P., Woodall C.A., Kelly D.P. Halothiobacillus neapolitanus strain OSWA isolated from “The Old Sulfur Well” at Harrogate (Yorkshire, England) Sys and Appl Micro. 2005;28:746–748. doi: 10.1016/j.syapm.2005.05.013. [DOI] [PubMed] [Google Scholar]
  • 24.Sievert S.M., Heidorn T., Kuever J. Halothiobacillus kellyi sp. nov., a mesophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus. Int J Syst Evol Microbiol. 2000;50(3):1229–1237. doi: 10.1099/00207713-50-3-1229. [DOI] [PubMed] [Google Scholar]
  • 25.Lane D.J., Harrison A.P., Jr, Stahl D., Pace B., Giovannoni S.J., Olsen G.J., Pace N.R. Evolutionary relationships among sulfur-and iron-oxidizing eubacteria. J Bacteriol. 1992;174(1):269–278. doi: 10.1128/jb.174.1.269-278.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Ambler R.P., Meyer T.E., Trudinger P.A., Kamen M.D. The amino acid sequence of the cytochrome c-554(547) from the chemolithotrophic bacterium Thiobacillus neapolitanus. Biochem J. 1985;227(3):1009–1013. doi: 10.1042/bj2271009. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES