Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2008 Jul 27;48(2):202–215. doi: 10.1007/s12088-008-0033-2

Metagenomics: Future of microbial gene mining

J Vakhlu 1,, Avneet Kour Sudan 1, B N Johri 2
PMCID: PMC3450183  PMID: 23100714

Abstract

Modern biotechnology has a steadily increasing demand for novel genes for application in various industrial processes and development of genetically modified organisms. Identification, isolation and cloning for novel genes at a reasonable pace is the main driving force behind the development of unprecedented experimental approaches. Metagenomics is one such novel approach for engendering novel genes. Metagenomics of complex microbial communities (both cultivable and uncultivable) is a rich source of novel genes for biotechnological purposes. The contributions made by metagenomics to the already existing repository of prokaryotic genes is quite impressive but nevertheless, this technique is still in its infancy. In the present review we have drawn comparison between routine cloning techniques and metagenomic approach for harvesting novel microbial genes and described various methods to reach down to the specific genes in the metagenome. Accomplishments made thus far, limitations and future prospects of this resourceful technique are discussed.

Keywords: Metagenomics, Uncultivable, Microbes, Novel genes

Full Text

The Full Text of this article is available as a PDF (674.6 KB).

References

  • 1.Streit W.R., Schmitz R. Metagenomics— the key to uncultured microbes. Curr Opin Biotechnol. 2004;7:492–498. doi: 10.1016/j.mib.2004.08.002. [DOI] [PubMed] [Google Scholar]
  • 2.Handelsman J. Sorting metagenomics. Nature Biotech. 2005;23:38–39. doi: 10.1038/nbt0105-38. [DOI] [PubMed] [Google Scholar]
  • 3.Sharma R. Unculturable’ bacterial diversity. An untapped resource. Curr Sci. 2005;89:72–77. [Google Scholar]
  • 4.Daniel R. The metagenomics of soil. Nat Microbiol Rev. 2005;3:470–478. doi: 10.1038/nrmicro1160. [DOI] [PubMed] [Google Scholar]
  • 5.Tringe S.G., mering C., Kobayashi A., Salamov A.A., Chen K., Chang H.W., Podar M., Short J.M., Mathur E.J., Deter J.C., Bork P., Hugenholtz P., Rubin E.M. Comparative Metagenomics of Microbial Communities. Science. 2005;22:554–555. doi: 10.1126/science.1107851. [DOI] [PubMed] [Google Scholar]
  • 6.Cowan D., Meyer Q., Stafford W., Muyanga S., Cameron R., Wittwer P. Metagenomic gene discovery: past: present and future. Trends Biotechnology. 2005;23:322–329. doi: 10.1016/j.tibtech.2005.04.001. [DOI] [PubMed] [Google Scholar]
  • 7.Gill p. M., Deboy R.T., Eckburg P.B., Turnbaugh P.J., Samuel B.S., Gordon J.I., Relman D.A., Liggott C.M., Fraser, Nelson K.E. Metagenomic analysis of the human distal gut microbiome. Science. 2006;312:1355–1359. doi: 10.1126/science.1124234. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Kimura N. Metagenomics: Access to unculturable microbes in the environment. Microbes Environ. 2006;2:201–215. doi: 10.1264/jsme2.21.201. [DOI] [Google Scholar]
  • 9.Ward N. New direction and interaction in metagenomic research. FEMS Microbiol Ecol. 2005;55:331–338. doi: 10.1111/j.1574-6941.2005.00055.x. [DOI] [PubMed] [Google Scholar]
  • 10.Kaeberlein T., Lewis E., Epstein S.S. Isolating uncultivable microorganism in pure culture by a simulated natural environment. Science. 2002;296:1127–1129. doi: 10.1126/science.1070633. [DOI] [PubMed] [Google Scholar]
  • 11.Zengler S., Teledo G., Rappe M., Elhens J., Mathur E.J., Short J.M., Killer M. Cultivating the uncultured. PNAS. 2002;99:15681–15686. doi: 10.1073/pnas.252630999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Torsvik K.V., Goksoyr J. Determination of bacterial DNA in soil. Soil Biol Biochem. 1978;10:7–12. doi: 10.1016/0038-0717(78)90003-2. [DOI] [Google Scholar]
  • 13.Lane D.J., Pace B., Olsen G.J., Stahl D.A., Sogin M.L., Pace N.R. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci USA. 1985;82:6955–6959. doi: 10.1073/pnas.82.20.6955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Stahl D.A., Lane D.J., Olsen G.J., Pace N.R. Characterization of yellowstone hot spring microbial community by 5S rRNA sequences. Appl Environ Microbiol. 1985;49:1379–1384. doi: 10.1128/aem.49.6.1379-1384.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Pace N.R., Stahl D.A., Lane D.J., Olsen G.J. The analysis of natural microbial populations by ribosomal RNA. Adv Microb Ecol. 1986;9:1–55. [Google Scholar]
  • 16.Schloss P., Handelsman Biotechnoligical prospects from metagenomics. Curr Opin Biotechnol. 2003;14:303–310. doi: 10.1016/S0958-1669(03)00067-3. [DOI] [PubMed] [Google Scholar]
  • 17.Leveau J.H., Gerards S., Voer W., VanVeen J.A. Phylogeny’ function analysis of (Meta) genomic libraries: screening for expression of ribosomal RNA genes by large-insert library flfluorescent in situ hybridization (lil-fish) Environ Microbiol. 2004;6:990–998. doi: 10.1111/j.1462-2920.2004.00673.x. [DOI] [PubMed] [Google Scholar]
  • 18.Riesenfeld G.S., Schloss P.D., Handelsman J. METAGENOMICS: Genomic analysis of microbial communities. Annual Review of Genetics. 2004;38:525–552. doi: 10.1146/annurev.genet.38.072902.091216. [DOI] [PubMed] [Google Scholar]
  • 19.Entcheva P., Liebl W., Johann A., Hartsch T., Streit W.R. Direct cloning from enrichment cultures a reliable strategy for isolation of complete operons and genes from microbial consortia. Appl Environ Microbiol. 2001;67:89–99. doi: 10.1128/AEM.67.1.89-99.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Knietsch A., Waschkowitz T., Bowein S., Henne A., Daniel R. Construction and screening of metagenomic libraries derived from enrichment cultures: Generation of a gene bank for genes conferring alcohol oxido reductase activity E. coli. Appl Environ Microbiol. 2003;69:1408–1416. doi: 10.1128/AEM.69.3.1408-1416.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Knietsch A., Waschkowitz T., Bowein S., Henne A., Daniel R. Identification and characterization of coenzymes B12 — dependent glycerol dehydratase — and diol dehydratase-encoding genes from metagenomic DNA libraries derived from enrichment cultures. Appl Environ Microbiol. 2003;69:3048–3060. doi: 10.1128/AEM.69.6.3048-3060.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Cowan D. Metagenomics, gene discovery and ideal biocatalyst. Biochem Society Transac. 2004;32:298–302. doi: 10.1042/BST0320298. [DOI] [PubMed] [Google Scholar]
  • 23.Venter J.C., Reminton K., Heidelberg J.F., Halpern A.L., Rusch D., Eisen J.A., Wu D., Paulsen I., Nelson K.E., Nelson W., Fouts D.E., Levy S., Knap A.H., Lomas M.W., Nealson K., White O., Peterson J., Hoffman J., Smith H.O. Environmental genome shortgun sequencing of Sargasso Sea. Science. 2004;304:66–74. doi: 10.1126/science.1093857. [DOI] [PubMed] [Google Scholar]
  • 24.Healy F.G., Ray R.M., Aldrich H.C., Wilkie H.C., Shanmugam K.T. Direct isolation of functional genes encoding celluloses from the microbial consortia in hemophilic anaerobic digester maintained on lignocelluloses. Appl Microbiol Biotechnol. 1995;43:667–674. doi: 10.1007/BF00164771. [DOI] [PubMed] [Google Scholar]
  • 25.Schmidt T., Delong E., Pace N. Analysis of a marine Pico-Plankto community of 16S rRNA gene cloning and sequencing. J Bacteriol. 1991;173:4371–4378. doi: 10.1128/jb.173.14.4371-4378.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Tsai Y.L., Olson B.H. Rapid methods for separation of bacterial DNA from humic substances in sediments for polymerase chain reaction. Appl Environ Microbiol. 1992;58:2292–2295. doi: 10.1128/aem.58.7.2292-2295.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Zhou J., Brun M.A., Tiedje J.M. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62:316–322. doi: 10.1128/aem.62.2.316-322.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Santosa DA (2001) Rapid extraction and purification of environmental DNA for molecular cloning applications and molecular diversity studies. Mol Biotech 1759–1764 [DOI] [PubMed]
  • 29.Bergman H. A strategy for optimizing quality and quantity of DNA extracted from soil. J Microbiol method. 2001;45:7–20. doi: 10.1016/S0167-7012(01)00213-5. [DOI] [PubMed] [Google Scholar]
  • 30.Lorenz P., Liebeton K., Niehaus F., Eck J. Screening for novel enzymes for biocatalytic processes: accessing the metagenome as a resource of novel functional sequence space. Curr Opin Biotechnol. 2002;13:572–577. doi: 10.1016/S0958-1669(02)00345-2. [DOI] [PubMed] [Google Scholar]
  • 31.Bohannan B.J.M., Hughes J. New approaches to analyzing microbial biodiversity data. Curr opin Microbiol. 2003;6:282–287. doi: 10.1016/S1369-5274(03)00055-9. [DOI] [PubMed] [Google Scholar]
  • 32.Short, JM and Mathur EJ (1999) Production and use of normalized DNA Libraries. US Patent 6001574
  • 33.Yokouchi H., fukuoka Y., Mukoyama D., Calugay R., Takeyama H., Matsunaga T. Whole metagenome amplification of a microbial community associated with scleractinian coral by multiple displacement amplification using φ29 polymerase. Environ Microbiol. 2006;8:1155–1163. doi: 10.1111/j.1462-2920.2006.01005.x. [DOI] [PubMed] [Google Scholar]
  • 34.Crameri R., Suter M. Display of biologically active proteins on the surface of filamentous phages: cDNA cloning system for the selection of functional gene products linked to the genetic information responsible for their production. Gene. 1993;137:69–75. doi: 10.1016/0378-1119(93)90253-Y. [DOI] [PubMed] [Google Scholar]
  • 35.Henne A., Daniel R., Schmitz R.A., Gottschalk G. Construction of environmental DNA libraries in E.coli and screening for the presence of gene conferring utilization of 4-hydroxybutyate. Appl Environ Microbiol. 1999;65:3901–3907. doi: 10.1128/aem.65.9.3901-3907.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Courtoiss S., Cappellano C.M., Ball M., Francou F.X., Normand P., Helynck G., Martinez A., Kolvek S.J., Hopke J., Osborne M.S., Paul R., Guerineau M., Jeannin P., Simonel P., parnodet J.L. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol. 2003;69:6235–6242. doi: 10.1128/AEM.69.1.49-55.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Henne A., Schmitz R.A., Bomeke M., Gottschalk G., Daniel R. Screening of environmental DNA libraries for presence of genes conferring lipolytic activity on E.coli. Appl Environ Microbiol. 2000;66:3113–3116. doi: 10.1128/AEM.66.7.3113-3116.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Beja O., Suzuki M.T., Koonin E.V., Aravind L., Hadd A., Nguyen L.P., Villacorta R., Amjadi M., Garrigues C., Jovanovich S.B., Feldman R.A., Delong E.F. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol. 2000;2:516–529. doi: 10.1046/j.1462-2920.2000.00133.x. [DOI] [PubMed] [Google Scholar]
  • 39.Rondon M.R., August P.R., Betterman A.D., Brady S.F., Grossman T.H., Liles M.R., Lynch B.A., Macneil I.A., Goodman R.M. Cloning the soil metagenome; a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Applied Environ Microbiol. 2000;66:2541–2547. doi: 10.1128/AEM.66.6.2541-2547.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Voget S., Leggewie C., Uesbeck C., Raasch C., Jaeger K.E., Streit W.R. Prospecting for novel biocatalysts in a soil metagenome. App Environ Microbiol. 2003;69:6235–6242. doi: 10.1128/AEM.69.10.6235-6242.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 41.Alm E. The presence of humic substances and DNA in RNA extracts affects hybridization results. Appl Environ Microbiol. 2000;66:4547–4554. doi: 10.1128/AEM.66.10.4547-4554.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Frischer M.E., Danfouth J.M., Healy A.N., Saunder F.M. Whole-cell versus total RNA extraction for analysis of microbial community structure with 16S-rRNA-targeted oligonucleotide probes in salt marsh sediment. Appl Environ Microbiol. 2000;66:3037–3043. doi: 10.1128/AEM.66.7.3037-3043.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Griffiths R.T., Whiteley A.S., Donnell A.G., Bailey M.J. Rapid method for co extraction of DNA and RNA from natural environments for analysis of ribosomal DNAand r-RNA-based microbial community composition. Appl Environ Microbio. 2000;66:5488–5491. doi: 10.1128/AEM.66.12.5488-5491.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Rebel F., Renard J.P., Duranthon V. PCR-generated cDNA libraries from reduced numbers of mouse oocytes. Zygote. 1995;3:241–250. doi: 10.1017/s096719940000263x. [DOI] [PubMed] [Google Scholar]
  • 45.Starkey M.P., Umrania Y., Nundy C.R., Bishop M.J. Reference cDNA libraries available from Europian sources. Mol Biotech. 1998;9:35–57. doi: 10.1007/BF02752696. [DOI] [PubMed] [Google Scholar]
  • 46.Watanabe K., Teramoto M., Futamata H., Harayama S. Molecular detection, isolation and physiological characterization of functionally dominant phenol-degrading bacteria in activated sludge. Appl Environ Microbiol. 1998;64:4396–4402. doi: 10.1128/aem.64.11.4396-4402.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Henckel T., Friedrich M., Conrad R. Molecular analyses of the methane oxidizing microbial community in rice field soil by targeting the genes of the 16S rRNA particulate methane monooxygenase, and methanol dehydrogenase. Appl Environ Microbiol. 1999;65:1980–1990. doi: 10.1128/aem.65.5.1980-1990.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Henckel T., Jackel U., Schnell S., Conrad R. Molecular analyses of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl Environ Microbiol. 2000;66:1801–1808. doi: 10.1128/AEM.66.5.1801-1808.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Futamata H., Harayama S., Kazuya W. Group specific monitoring of phenol hydroxylase genes for a functional assessment of phenol stimulated trichloroethylene bioremediation. Appl Environ Microbiol. 2001;67:4671–4677. doi: 10.1128/AEM.67.10.4671-4677.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Mesarch M.B., Nakabsu C.H., Nies L. Development of catechol 2,3 dioxygenase specific primers for monitoring bioremediation by competitive quantitative PCR. Appl Environ Microbiol. 2000;66:678–683. doi: 10.1128/AEM.66.2.678-683.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Seow K.T., Meurer G., Gerlitz M., Wendt-Pienkowski E., Hutchinson C.R., Davis J. A study of interactive type II polyketide synthases, using bacterial genes cloned from soil DNA: means to access and use genes from uncloned microorganisms. J Bacteriol. 1997;179:7360–7368. doi: 10.1128/jb.179.23.7360-7368.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Wilson M.S., Bakerman C., Madsen E.C. In-situ real-time catabolic gene expression: extraction and characterization of Napthalene dioxygenase mRNA transcript from ground water. Appl Environ Microbiol. 1999;65:80–87. doi: 10.1128/aem.65.1.80-87.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 53.Ochman H. Lateral gene transfer and the nature of bacterial innovation. Nature. 2000;405:299–304. doi: 10.1038/35012500. [DOI] [PubMed] [Google Scholar]
  • 54.Strokes H.W., Holmes A.J., Nield B.S., Holley M.P., Nevalainen K.M., Mabbutt, Gillings M.R. Gene cassette PCR: Sequence independent recovery of entire genes from environmental DNA. App Environ Microbiol. 2001;67:5240–5246. doi: 10.1128/AEM.67.11.5240-5246.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Bennet P.M. Integrons and gene cassette: a genetic construction kit for bacteria. J Antimicrob Chemo. 1999;43:1–4. doi: 10.1093/jac/43.1.1. [DOI] [PubMed] [Google Scholar]
  • 56.Collis C.M., Hall R.M. Gene cassettes from insert region of integrons are excised as covalent closed circles. Mol Microbio. 1992;6:2875–2885. doi: 10.1111/j.1365-2958.1992.tb01467.x. [DOI] [PubMed] [Google Scholar]
  • 57.Ricchia G.D., Hall R.M. Gene cassettes: a new class of mobile elements. Microbiology. 1995;141:3015–3027. doi: 10.1099/13500872-141-12-3015. [DOI] [PubMed] [Google Scholar]
  • 58.Rowe-Magnus D.A., Mazel D. Integrons: natural tool for bacterial genome evolution. Curr Opin Microbiol. 2001;4:565–569. doi: 10.1016/S1369-5274(00)00252-6. [DOI] [PubMed] [Google Scholar]
  • 59.Tyson G.W., Chapman J., Hugenholtz P., Allen E.E., Ram R.J., Richardson P.M., Solovyev V.V., Rubin E.M., Rokhsar D.S., Banfield J.F. Community structure and metabolism through reconstruction of microbial genome from environment. Nature. 2004;428:37–43. doi: 10.1038/nature02340. [DOI] [PubMed] [Google Scholar]
  • 60.Handelsman J. Metageneomics: application of genomics to uncultured microorganism. Microbiol Mole Biol Rev. 2004;68:669–685. doi: 10.1128/MMBR.68.4.669-685.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Yun J., Ryu S. Screening for novel enzymes from metagenome and sigex, as way to improve it. Microbial cell factories. 2005;4:8. doi: 10.1186/1475-2859-4-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Sebat J.L., Colwell F.S., Crawford R.L. Metagenomic profiling: Microarray analysis of an environmental genomic library. Appl Environ Microbiol. 2003;69:4927–4934. doi: 10.1128/AEM.69.8.4927-4934.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Dennis P., Edward E.A., Liss S.N., Fulthorpe R. Monitoring gene expression in mixed microbial communities by using DNA microarrays. Appl Environ Microbiol. 2003;69:769–778. doi: 10.1128/AEM.69.2.769-778.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Quaiser A., Ochsenreiter T., Klenk A., Kletzin A., Treusch A.H., Meurer G., Eck J., Sensen C.W., Schleper C. First insight into genome of an uncultivated crenarchaeote from soil. Environ Microbiol. 2002;4:603–611. doi: 10.1046/j.1462-2920.2002.00345.x. [DOI] [PubMed] [Google Scholar]
  • 65.Bintrim S.B., Donohue T.J., Handelsman J., Roberts G.P., Goodman R.M. Molecular phylogeny of archea from soil. Proc Natl Acad Sci USA. 1997;94:277–282. doi: 10.1073/pnas.94.1.277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 66.Hugenholtz P., Goebel B.M., Pace N.R. Impact of culture independent studies on the emerging phylogentic view of bacterial diversity. J Bacteriol. 1998;180:4765–4774. doi: 10.1128/jb.180.18.4765-4774.1998. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Kellenberger E. Exploring the unknown. EMBO rep. 2001;2:5–7. doi: 10.1093/embo-reports/kve014. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Stein J.L., Marsh T.L., Wu K.Y., Shizuya H., Delong E.F. Characterization of uncultivated prokaryotes: isolation and analysis of 40-kilobase-pair genomic fragment from a marine archaeon. J Bacteriol. 1996;178:591–599. doi: 10.1128/jb.178.3.591-599.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Beja O., Spudich E.N., Spudich M., Leclerc, Delong E.F. Proteorhodopsin phototrophy in ocean. Nature. 2001;411:786–789. doi: 10.1038/35081051. [DOI] [PubMed] [Google Scholar]
  • 70.Song J.S., Jeon J.H., Lee J.H., Jeong S.H., Jeong B.C., Kim S.J., Lee J.H., Lee S.H. Molecular characterization of TEM-type beta-Lactamases identified in cold seep sediments of Edison Seamount. J Microbiol. 2005;43:172–178. [PubMed] [Google Scholar]
  • 71.Kottmann 2005. Data acquisition, Design and implementation of an integrative database for metagenomic (from net). Marmic.mpg.de/marimic-cms/uploads-edits/Renzo-Kottmann.pdf
  • 72.Greenbelt C.L., Baum J., klein B.Y., Nachshon S., Koltnov V., Cano R.J. Micrococcus luteus-survival in amber. Microb Ecol. 2004;48:120–127. doi: 10.1007/s00248-003-2016-5. [DOI] [PubMed] [Google Scholar]
  • 73.Cano R.J., Tiefenbrunner F., Ubaldi M., Cueto C., Luciani S., Cox T., Orkand P., Kunzel K.H., Rollo F. Sequence analysis of bacterial DNA in colon and stomach of the Tyrolean Iceman. Am J Phys Anthropol. 2000;112:297–309. doi: 10.1002/1096-8644(200007)112:3<297::AID-AJPA2>3.0.CO;2-0. [DOI] [PubMed] [Google Scholar]
  • 74.Angly F., Rodriguez-Brito B., Bangor D., McNairnie P., Breitbart M., Salamon P., Felts B., Nulton J., Mahaffy J., Rohwer F. PHACCS, online tool for estimating the structure and diversity of uncultured viral communities using metagenomic information. BMC Bioinformatics. 2005;6:41. doi: 10.1186/1471-2105-6-41. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Gabor E.M., Alkema W.B., Janssen D.B. Quantifying the accessibility of metagenome by random expression cloning techniques. Environ Microbiol. 2004;6:876–886. doi: 10.1111/j.1462-2920.2004.00640.x. [DOI] [PubMed] [Google Scholar]
  • 76.Cottrell M.T., Jessica A., Moore, Kirchman D. L. Chitinases from Uncultured marine microorganisms. Appl Environ Microbol. 1999;65:2553–2557. doi: 10.1128/aem.65.6.2553-2557.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Richardson T.H., Tan X., Frey G., Callen W., Cabell M., Lam D., Macomber J., Short J.M., Robertson D.E., Miller C. A novel high performance enzyme for starch liquefaction. J Biol Chem. 2002;277:26501–26507. doi: 10.1074/jbc.M203183200. [DOI] [PubMed] [Google Scholar]
  • 78.Brady S.F., Chao C.J., Clardy J. New natural product families from an environmental DNA (eDNA) gene cluster. J Am Chem Soc. 2002;124:9968–9969. doi: 10.1021/ja0268985. [DOI] [PubMed] [Google Scholar]
  • 79.Wang G.Y., Graziani E., Water B., Pan W., Li X., McDermott J., Meurer G., Saxena G., Anderson R.J., Davies J. Novel natural products from soil DNA libraries in a Streptomycete host. Org Letter. 2000;2:2401–2404. doi: 10.1021/ol005860z. [DOI] [PubMed] [Google Scholar]
  • 80.Brady S.F., Clardy J. Long-chain N-acyl amino acid antibiotics isolated from heterogeneously expressed environmental DNA. J Am Chem Soc. 2000;122:12903–12904. doi: 10.1021/ja002990u. [DOI] [Google Scholar]
  • 81.Brady S.F., Chao C.J., Handelsman J., Clardy J. Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Organ Lett. 2001;3:1981–1984. doi: 10.1021/ol015949k. [DOI] [PubMed] [Google Scholar]
  • 82.Gillespie D.E., Brady S.F., Bettermann A.D., Cianciotto N.P., Liles M.R., Rondon M.R., Clardy J., Goodman R.M., Handelsman J. Isolation of antibiotics Turbomycin A and B from a metagenomic library of soil microbial DNA. Appl Environ Microbiol. 2002;68:4301–4306. doi: 10.1128/AEM.68.9.4301-4306.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Mac Neil I.A., Tiong C.A., Minor C., August P.R., Grossman T.H., Lioacono K.A., Lynch B.A., Phillips T., Narula S., Sundaramoorthi R. Expression and isolation antimicrobial small molecules from soil DNA libraries. J Mol Microbiol Biotechnol. 2001;3:301–308. [PubMed] [Google Scholar]
  • 84.Bell J.C., Sunna A., Gibbs M.D., Curach N.C., Nevaleerinen H., Bergquist P. Prospecting for novel lipase gene using PCR. Microbiology. 2002;148:2283–2291. doi: 10.1099/00221287-148-8-2283. [DOI] [PubMed] [Google Scholar]
  • 85.Rhee J.K., Ahn D.G., Gukin Y., Oh W.J. New thermophilic and thermostable esterase with sequence similarity to hormone sensitive lipase family cloned from a metagenomic library. Appl Environ Microbiol. 2005;71:817–825. doi: 10.1128/AEM.71.2.817-825.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Jiang Z., Wang H., Ma Y., Wei D. Characterization of two novel lipase genes isolated directly from environmental sample. Appl Microbiol Biotechnol. 2006;70:327–332. doi: 10.1007/s00253-005-0065-z. [DOI] [PubMed] [Google Scholar]
  • 87.Elend C., Schmeisser C., Leggewie C., Babiak P., Carballeira J.D., Steele H.L., Reymond J.L., Jaeger K.E., Streit W.R. Isolation and Biochemical characterization of two novel metagenomic derived esterases. Appl Environ Microbiol. 2006;72:3637–3645. doi: 10.1128/AEM.72.5.3637-3645.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Robertson D.E., Chaplin J.A., Desant G., Podar M., Maden M. Exploring nitrilase sequence space for enantioselective catalysis. Environ Microbiol. 2004;70:2429–2433. doi: 10.1128/AEM.70.4.2429-2436.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Brennan Y., allen W., Christoffersen L., Dupree P., Healay S., Hernandez M., Keller M., lile, Palachal N., Tamayo G., Wells S., Mathur E.J., Short M., Robertson D.E., Steer B.A. Unusual microbial xylanases from insect guts. Appl Environ Microbiol. 2004;70:3609–3617. doi: 10.1128/AEM.70.6.3609-3617.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 90.Eckburg P.B., Bik E.M., Bernstein C.N., Purdom E., Dethlefsen L., Sargent M., Gill S.R., Nelson K.E., Relman D.A. Diversity of the human intestinal microbial flora. Science. 2005;308:1635–1638. doi: 10.1126/science.1110591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Lorenz P., Eck J. Metagenomics and industrial application. Nat Rev Microbiol. 2005;3:510–516. doi: 10.1038/nrmicro1161. [DOI] [PubMed] [Google Scholar]
  • 92.Delong E.F. Microbial population genomics and ecology: The road ahead. Environ Microbiol. 2004;6:875–878. doi: 10.1111/j.1462-2920.2004.00668.x. [DOI] [PubMed] [Google Scholar]
  • 93.Beja O. To BAC or not to BAC: marine ecogenomics. Curr Opin Biotechnol. 2004;15:187–190. doi: 10.1016/j.copbio.2004.03.005. [DOI] [PubMed] [Google Scholar]
  • 94.Hugenholtz P. Exploring prokaryotic diversity in the genomic era. Genome Biol. 2002;3:3. doi: 10.1186/gb-2002-3-2-reviews0003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Schmeisser C., Steele H., Streit W. Metagenomics, Biotechnology with non-culturable microbes. Appl Microbiol Biotechnol. 2007;75:955–962. doi: 10.1007/s00253-007-0945-5. [DOI] [PubMed] [Google Scholar]
  • 96.Cowan D.A. Microbial genomes — the untrapped resource. Trends in Biotechnolo. 2000;18:14–16. doi: 10.1016/S0167-7799(99)01395-5. [DOI] [PubMed] [Google Scholar]
  • 97.Hardeman F., Sjoling S. Metagenomic approach for the isolation of a novel low-temperature-active lipase from uncultured bacteria of marine sediment. FEMS Microbiol. 2007;59:524–534. doi: 10.1111/j.1574-6941.2006.00206.x. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES