Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2008 Jun 12;48(2):152–155. doi: 10.1007/s12088-008-0021-6

Advances in monitoring of catabolic genes during bioremediation

Kirsten S Jørgensen 1,
PMCID: PMC3450184  PMID: 23100709

Abstract

Biodegradation of xenobiotic compounds by microbes is exploited in the clean up of contaminated environments by bioremediation. Catabolic (or functional) genes encode for specific enzymes in catabolic pathways such as key enzymes in xenobiotic degradation pathways. By assessing the abundance or the expression of key genes in environmental samples one can get a potential measure of the degradation activity. One way of assessing the abundance and expression of specific catabolic genes is by analyzing the metagenomic DNA and RNA from environmental samples. Three major challenges in the detection and quantification of catabolic genes in bioremediation studies are 1) the accurate and sensitive quantification from environmental samples 2) the coverage of the enzymatic potential by the targeted genes 3) the validation of the correlation with actual observed degradation activities in field cases. New advances in realtime PCR, functional gene arrays and meta-transcriptomics have improved the applicability of catabolic gene assessment during bioremediation.

Keywords: Catabolic genes, Functional genes, Bioremediation, Real-time PCR, Functional gene arrays, metagenomics, metatranscriptomics

Full Text

The Full Text of this article is available as a PDF (573.6 KB).

References

  • 1.Debruyn J.M., Chewning C.S., Sayler G.S. Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments. Environ Sci Technol. 2007;41:5426–5432. doi: 10.1021/es070406c. [DOI] [PubMed] [Google Scholar]
  • 2.Indest K.J., Crocker F.H., Athow R. A TaqMan polymerase chain reaction method for monitoring RDX-degrading bacteria based on the xplA functional gene. J Microbiol Meth. 2007;68:267–274. doi: 10.1016/j.mimet.2006.08.008. [DOI] [PubMed] [Google Scholar]
  • 3.Sun Y., Polishchuk E.A., Radoja U., Cullen W.R. Identification and quantification of arsC genes in environmental samples by using real-time PCR. J Microbiol Meth. 2004;58:335–349. doi: 10.1016/j.mimet.2004.04.015. [DOI] [PubMed] [Google Scholar]
  • 4.Beller H.R., Kane S.R., Legler T.C., Alvarez P.J.J. A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon-degrading bacteria based on a catabolic gene. Environ Sci Technol. 2002;36:3977–3984. doi: 10.1021/es025556w. [DOI] [PubMed] [Google Scholar]
  • 5.Widada J., Nojiri H., Omori T. Recent developments in molecular techniques for identification and monitoring of xenobiotic-degrading bacteria and their catabolic genes in bioremediation. Appl Microbiol Biotechnol. 2002;60:45–59. doi: 10.1007/s00253-002-1072-y. [DOI] [PubMed] [Google Scholar]
  • 6.Galvão T.C., Mohn W.W., Lorenzo V. Exploring the microbial biodegradation and biotransformation gene pool. Trends Biotechnol. 2005;23:497–506. doi: 10.1016/j.tibtech.2005.08.002. [DOI] [PubMed] [Google Scholar]
  • 7.Ferrer M., Martínez-Abarca F., Golyshin P.N. Mining genomes and ‘metagenomes’ for novel catalysts. Curr Opin Biotechnol. 2005;16:588–593. doi: 10.1016/j.copbio.2005.09.001. [DOI] [PubMed] [Google Scholar]
  • 8.Rhee S.-K., Liu X., Wu L., Chong S.C., Wan X., Zhou J. Detection of genes involved in biodegradation and biotransformation in microbial communities by using 50-mer oligonucleotide microarrays. Appl Environ Microbiol. 2004;70:4303–4317. doi: 10.1128/AEM.70.7.4303-4317.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.He Z., Gentry T.J., Schadt C.W., Wu L., Liebich J., Chong S.C., Huang Z., Wu W., Gu B., Jardine P., Criddle C., Zhou J. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 2007;1:67–77. doi: 10.1038/ismej.2007.2. [DOI] [PubMed] [Google Scholar]
  • 10.Leigh M.B., Pellizari V.H., Uhlík O., Sutka R., Rodrigues J., Ostrom N.E., Zhou J., Tiedje J.M. Biphenyl-utilizing bacteria and their functional genes in a pine root zone contaminated with polychlorinated biphenyls (PCBs) ISME J. 2007;1:134–148. doi: 10.1038/ismej.2007.26. [DOI] [PubMed] [Google Scholar]
  • 11.Wu L., Liu X., Schadt C.W., Zhou J. Microarray-based analysis of subnanogram quantities of microbial community DNAs by using whole-community genome amplification. Appl Environ Microbiol. 2006;72:4931–4941. doi: 10.1128/AEM.02738-05. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Nicolaisen M.H., Bælum J., Jacobsen C.S., Sørensen J. Transcription dynamics of the functional tfdA gene during MCPA herbicide degradation by Cupriavidus necator AEO106 (pRO101) in agricultural soil. Environ Microbiol. 2008;10:571–579. doi: 10.1111/j.1462-2920.2007.01476.x. [DOI] [PubMed] [Google Scholar]
  • 13.Gao H., Yang Z.K., Gentry T.J., Wu L., Schadt C.W., Zhou J. Microarray-based analysis of microbial community RNAs by whole-community RNA amplification. Appl Environ Microbiol. 2007;73:563–571. doi: 10.1128/AEM.01771-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Winderl C., Schaefer S., Lueders T. Detection of anaerobic toluene and hydrocarbon degraders in conta-minated aquifers using benzylsuccinate synthase (bssA) genes as a functional marker. Environ Microbiol. 2007;9:1035–1046. doi: 10.1111/j.1462-2920.2006.01230.x. [DOI] [PubMed] [Google Scholar]
  • 15.Jørgensen K.S. In situ bioremediation. Adv Appl Microbiol. 2007;61:285–305. doi: 10.1016/S0065-2164(06)61008-3. [DOI] [PubMed] [Google Scholar]
  • 16.Sanseverino J., Werner C., Fleming J., Applegate B., King J.M.H., Sayler G.S. Molecular diagnostics of polycyclic aromatic hydrocarbon biodegradation in manufactured gas plant soils. Biodegradation. 1993;10:303–321. doi: 10.1007/BF00695976. [DOI] [PubMed] [Google Scholar]
  • 17.Tuomi P.M., Salminen J.M., Jørgensen K.S. The abundance of nahAc genes correlates with the 14C-naphthalene mineralization potential in petroleum hydrocarbon-contaminated oxic soil layers. FEMS Microb Ecol. 2004;51:99–107. doi: 10.1016/j.femsec.2004.07.011. [DOI] [PubMed] [Google Scholar]
  • 18.Eyers L., George I., Schuler L., Stenuit B., Agathos S.N., Fantroussi S. Environmental genomics: exploring the unmined richness of microbes to degrade xenobiotics. Appl Microbiol Biotechnol. 2004;66:123–130. doi: 10.1007/s00253-004-1703-6. [DOI] [PubMed] [Google Scholar]
  • 19.Scow K.M., Hicks K.A. Natural attenuation and enhanced bioremediation of organic contaminants in groundwater. Curr Opin Biotechnol. 2005;16:246–253. doi: 10.1016/j.copbio.2005.03.009. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES