Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2008 Jul 27;48(2):173–194. doi: 10.1007/s12088-008-0031-4

From bacterial genomics to metagenomics: concept, tools and recent advances

Pooja Sharma 1, Hansi Kumari 1, Mukesh Kumar 1, Mansi Verma 1, Kirti Kumari 1, Shweta Malhotra 1, Jitendra Khurana 2, Rup Lal 1,
PMCID: PMC3450186  PMID: 23100712

Abstract

In the last 20 years, the applications of genomics tools have completely transformed the field of microbial research. This has primarily happened due to revolution in sequencing technologies that have become available today. This review therefore, first describes the discoveries, upgradation and automation of sequencing techniques in a chronological order, followed by a brief discussion on microbial genomics. Some of the recently sequenced bacterial genomes are described to explain how complete genome data is now being used to derive interesting findings. Apart from the genomics of individual microbes, the study of unculturable microbiota from different environments is increasingly gaining importance. The second section is thus dedicated to the concept of metagenomics describing environmental DNA isolation, metagenomic library construction and screening methods to look for novel and potentially important genes, enzymes and biomolecules. It also deals with the pioneering studies in the area of metagenomics that are offering new insights into the previously unappreciated microbial world.

Keywords: Genomics, Metagenomics

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Footnotes

The authors have contributed equally to the work

References

  • 1.Sanger F., Air G.M., Barrell B.G., Brown N.L., Coulson A.R., Fiddes C.A., Hutchison C.A., Slocombe P.M., Smith M. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 1977;265:687–695. doi: 10.1038/265687a0. [DOI] [PubMed] [Google Scholar]
  • 2.Fleischmann R.D., Adams M.D., White O., Clayton R.A., Kirkness E.F., Kerlavage A.R., Bult C.J., Tomb J.F., Dougherty B.A., Merrick J.M. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science. 1995;269(5223):496–512. doi: 10.1126/science.7542800. [DOI] [PubMed] [Google Scholar]
  • 3.Fraser C.M., Gocayne J.D., White O., Adams M.D., Clayton R.A., Fleischmann R.D., Bult C.J., Kerlavage A.R., Sutton G., Kelley J.M., Fritchman R.D., Weidman J.F., Small K.V., Sandusky M., Fuhrmann J., Nguyen D., Utterback T.R., Saudek D.M., Phillips C.A., Merrick J.M., Tomb J.F., Dougherty B.A., Bott K.F., Hu P.C., Lucier T.S., Peterson S.N., Smith H.O., Hutchison C.A., 3rd, Venter J.C. The minimal gene complement of Mycoplasma genitalium. Science. 1995;270(5235):397–403. doi: 10.1126/science.270.5235.397. [DOI] [PubMed] [Google Scholar]
  • 4.Maxam A.M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci. 1977;74:560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Maxam A.M., Gilbert W. Sequencing end-labelled DNA with base specific chemical cleavages. Methods Enzymol. 1980;65:499–560. doi: 10.1016/S0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  • 6.Sanger F., Nicklen S., Coulson A.R. DNA sequencing with chain terminating inhibitors. Proc Natl Acad Sci. 1977;74:5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Smith L.M., Sanders J.Z., Kaiser R.J., Hughes P., Dodd C., Connell C.R., Heiner C., Kent S.B.H., Hood L.E. Fluorescence detection in automated DNA sequence analysis. Nature. 1986;321:674–679. doi: 10.1038/321674a0. [DOI] [PubMed] [Google Scholar]
  • 8.Prober J.M., Trainor G.L., Dam R.J., Hobbs F.W., Robertson C.W., Zagursky R.J., Cocuzza A.J., Jensen M.A., Baumeister K. A system for rapid DNA sequencing with fluorescent chain-terminating dideoxynucleotides. Science. 1987;238(4825):336–341. doi: 10.1126/science.2443975. [DOI] [PubMed] [Google Scholar]
  • 9.Swerdlow H., Gesteland R. Capillary gel electrophoresis for rapid, high resolution DNA sequencing. Nucleic Acids Res. 1990;18(6):1415–1419. doi: 10.1093/nar/18.6.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Bains W., Smith G.C. A novel method for nucleic acid sequence determination. J Theor Biol. 1988;135(3):303–307. doi: 10.1016/S0022-5193(88)80246-7. [DOI] [PubMed] [Google Scholar]
  • 11.Drmanac R., Labat I., Brukner I., Crkvenjakov R. Sequencing of megabase plus DNA by hybridization: theory of the method. Genomics. 1989;4(2):114–128. doi: 10.1016/0888-7543(89)90290-5. [DOI] [PubMed] [Google Scholar]
  • 12.Khrapko K.R., Lysov Y., Khorlyn A.A., Shick V.V., Florentiev V.L., Mirzabekov A.D. An oligonucleotide hybridization approach to DNA sequencing. FEBS Lett. 1989;256(1–2):118–122. doi: 10.1016/0014-5793(89)81730-2. [DOI] [PubMed] [Google Scholar]
  • 13.Ronaghi M., Karamohamed S., Pettersson B., Uhlén M., Nyrén P. Real-time DNA sequencing using detection of pyrophosphate release. Anal Biochem. 1996;242(1):84–89. doi: 10.1006/abio.1996.0432. [DOI] [PubMed] [Google Scholar]
  • 14.Ronaghi M., Uhlén M., Nyrén P. A sequencing method based on real-time pyrophosphate. Science. 1998;281(5375):363–365. doi: 10.1126/science.281.5375.363. [DOI] [PubMed] [Google Scholar]
  • 15.Brenner S., Johnson M., Bridgham J., Golda G., Lloyd D.H., Johnson D., Luo S., McCurdy S., Foy M., Ewan M., Roth R., George D., Eletr S., Albrecht G., Vermaas E., Williams S.R., Moon K., Burcham T., Pallas M., DuBridge R.B., Kirchner J., Fearon K., Mao J., Corcoran K. Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol. 2000;18(6):630–634. doi: 10.1038/76469. [DOI] [PubMed] [Google Scholar]
  • 16.Shendure J., Porreca G.J., Reppas N.B., Lin X., McCutcheon J.P., Rosenbaum A.M., Wang M.D., Zhang K., Mitra R.D., Church G.M. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005;309:1728–1732. doi: 10.1126/science.1117389. [DOI] [PubMed] [Google Scholar]
  • 17.Smith M.G., Gianoulis T.A., Pukatzki S., Mekalonas J.J., Ornston L.N., Gersein M., Snyder M. New insights into Acinetobacter baumannii pathogenesis revealed by high-density pyrosequencing and transposon mutagenesis. Genes and development. 2007;21:601–614. doi: 10.1101/gad.1510307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Margulies M., Egholm M., Altman W.E., Attiya S., Bader J.S., Bemben L.A., Berka J., Braverman M.S., Chen Y.J., Chen Z., Dewell S.B., Du L., Fierro J.M., Gomes X.V., Godwin B.C., He W., Helgesen S., Ho C.H., Irzyk G.P., Jando S.C., Alenquer M.L.I., Jarvie T.P., Jirage K.B., Kim J.B., Knight J.R., Lanza J.R., Leamon J.H., Lefkowitz S.M., Lei M., Li J., Lohman K.L., Lu H., Makhijani V.B., McDade K.E., McKenna M.P., Myers E.W., Nickerson E., Nobile J.R., Plant R., Puc B.P., Ronan M.T., Roth G.T., Sarkis G.J., Simons J.F., Simpson J.W., Srinivasan M., Tartaro K.R., Tomasz A., Vogt K.A., Volkmer G.A., Wang S.H., Wang Y., Weiner M.P., Yu P., Begley R.F., Rothberg J.M. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437(7057):376–380. doi: 10.1038/nature03959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Wicker T., Schlagenhauf E., Graner A., Close T.J., Keller B., Stein N. 454 sequencing put to test using the complex genome of barley. BMC Genomics. 2006;7:275. doi: 10.1186/1471-2164-7-275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Berezikov E., Thuemmler F., Laake L.W., Kondova I., Bontrop R., Cuppen E., Plasterk R.H. Diversity of microRNAs in human and chimpanzee brain. Nat Genet. 2006;38:1375–1377. doi: 10.1038/ng1914. [DOI] [PubMed] [Google Scholar]
  • 21.Emrich S.J., Barbazuk B., Li L., Schnable P.S. Gene discovery and annotation using LCM-454 transcriptome sequencing. Genome Res. 2007;17:69–73. doi: 10.1101/gr.5145806. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Edwards R.A., Rodriguez-Brito B., Wegley L., Haynes M., Breitbart M., Peterson D.M., Saar M.O., Alexander S., Alexander E.C., Jr, Rohwer F. Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics. 2006;7:57. doi: 10.1186/1471-2164-7-57. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414. [DOI] [PubMed] [Google Scholar]
  • 24.Poinar H.N., Schwarz C., Qi J., Shapiro B., Macphee R.D., Buigues B., Tikhonov A., Huson D.H., Tomsho L.P., Auch A., Rampp M., Miller W., Schuster S.C. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science. 2006;311(5759):392–394. doi: 10.1126/science.1123360. [DOI] [PubMed] [Google Scholar]
  • 25.Green R.E., Krause J., Ptak S.E., Briggs A.W., Ronan M.T., Simons J.F., Du L., Egholm M., Rothberg J.M., Paunovic M., Paabo S. Analysis of one million base pairs of Neanderthal DNA. Nature. 2006;444:330–336. doi: 10.1038/nature05336. [DOI] [PubMed] [Google Scholar]
  • 26.Goldberg S.M., Johnson J., Busam D., Feldblyum T., Ferriera S., Friedman R., Halpern A., Khouri H., Kravitz S.A., Lauro F.M., Li K., Rogers Y.H., Strausberg R., Sutton G., Tallon L., Thomas T., Venter E., Frazier M., Venter J.C. Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes. Proc Natl Acad Sci. 2006;103(30):11240–11245. doi: 10.1073/pnas.0604351103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Huang X., Wang J., Aluru S., Yang S. P., Hillier L. PCAP: A Whole-Genome Assembly Program. Genome Res. 2003;13:2164–2170. doi: 10.1101/gr.1390403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Bonfield J.K., Smith K., Staden R. A new DNA sequence assembly program. Nucleic Acids Res. 1995;23(24):4992–4999. doi: 10.1093/nar/23.24.4992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Myers E.W., Sutton G.G., Delcher A.L., Dew I.M., Fasulo D.P., Flanigan M.J., Kravitz S.A., Mobarry C.M., Reinert K.H., Remington K.A., Anson E.L., Bolanos R.A., Chou H.H., Jordan C.M., Halpern A.L., Lonardi S., Beasley E.M., Brandon R.C., Chen L., Dunn P.J., Lai Z., Liang Y., Nusskern D.R., Zhan M., Zhang Q., Zheng X., Rubin G.M., Adams M.D., Venter J.C. A whole-genome assembly of Drosophila. Science. 2000;287(5461):2196–2204. doi: 10.1126/science.287.5461.2196. [DOI] [PubMed] [Google Scholar]
  • 30.Batzoglou S., Jaffe D.B., Stanley K., Butler J., Gnerre S., Mauceli E., Berger B., Mesirov J.P., Lander E.S. ARACHNE: a whole-genome shotgun assembler. Genome Res. 2002;12(1):177–189. doi: 10.1101/gr.208902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Wang J., Wong G.K., Ni P., Han Y., Huang X., Zhang J., Ye C., Zhang Y., Hu J., Zhang K., Xu X., Cong L., Lu H., Ren X., Ren X., He J., Tao L., Passey D.A., Wang J., Yang H., Yu J., Li S. RePS: a sequence assembler that masks exact repeats identified from the shotgun data. Genome Res. 2002;12(5):824–831. doi: 10.1101/gr.165102. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Aparicio S., Chapman J., Stupka E., Putnam N., Chia J., Dehal P., Christoffels A., Rash S., Hoon S., Smit A., Gelpke M. D. S., Roach J., Oh T., Ho I. Y., Wong M., Detter C., Verhoef F., Predki P., Tay A., Lucas S., Richardson P., Smith S. F., Clark M. S., Edwards Y. J. K., Doggett N., Zharkikh A., Tavtigian S. V., Pruss D., Barnstead M., Evans C., Baden H., Powell J., Glusman G., Rowen L., Hood L., Tan Y. H., Elgar G., Hawkins T., Venkatesh B., Rokhsar D., Brenner S. Whole-Genome Shotgun Assembly and Analysis of the Genome of Fugu rubripes. Science. 2002;297:1301–1310. doi: 10.1126/science.1072104. [DOI] [PubMed] [Google Scholar]
  • 33.Mullikin J.C., Ning Z. The phusion assembler. Genome Res. 2003;13(1):81–90. doi: 10.1101/gr.731003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Sutton G. G., White O., adams M. D., Kerlavage A. R. TIGR Assembler: a new tool for assembling large shotgun sequencing projects. Genome Science and Technology. 1995;1:9–19. [Google Scholar]
  • 35.Bocs S., Cruveiller S., Vallenet D., Nuel G., Médigue C. AMIGene: Annotation of MIcrobial Genes. Nucleic Acids Research. 2003;31(13):3723–3726. doi: 10.1093/nar/gkg590. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Besemer J., Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res. 2005;33:W451–W454. doi: 10.1093/nar/gki487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Delcher A.L., Harmon D., Kasif S., White O., Salzberg S.L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 1999;27(23):4636–4641. doi: 10.1093/nar/27.23.4636. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Bult C.J., White O., Olsen G.J., Zhou L., Fleischmann R.D., Sutton G.G., Blake J.A., FitzGerald L.M., Clayton R.A., Gocayne J.D., Kerlavage A.R., Dougherty B.A., Tomb J.F., Adams M.D., Reich C.I., Overbeek R., Kirkness E.F., Weinstock K.G., Merrick J.M., Glodek A., Scott J.L., Geoghagen N.S., Venter J.C. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science. 1996;273:1058–1073. doi: 10.1126/science.273.5278.1058. [DOI] [PubMed] [Google Scholar]
  • 39.Klenk H.P., Clayton R.A., Tomb J.F., White O., Nelson K.E., Ketchum K.A., Dodson R.J., Gwinn M., Hickey E.K., Peterson J.D., Richardson D.L., Kerlavage A.R., Graham D.E., Kyrpides N.C., Fleischmann R.D., Quackenbush J., Lee N.H., Sutton G.G., Gill S., Kirkness E.F., Dougherty B.A., McKenney K., Adams M.D., Loftus B., Peterson S., Reich C.I., McNeil L.K., Badger J.H., Glodek A., Zhou L., Overbeek R., Gocayne J.D., Weidman J.F., McDonald L., Utterback T., Cotton M.D., Spriggs T., Artiach P., Kaine B.P., Sykes S.M., Sadow P.W., D’Andrea K.P., Bowman C., Fujii C., Garland S.A., Mason T.M., Olsen G.J., Fraser C.M., Smith H.O., Woese C.R., Venter J.C. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature. 1997;390(6658):364–370. doi: 10.1038/37052. [DOI] [PubMed] [Google Scholar]
  • 40.Tomb J.F., White O., Kerlavage A.R., Clayton R.A., Sutton G.G., Fleischmann R.D., Ketchum K.A., Klenk H.P., Gill S., Dougherty B.A., Nelson K., Quackenbush J., Zhou L., Kirkness E.F., Peterson S., Loftus B., Richardson D., Dodson R., Khalak H.G., Glodek A., McKenney K., Fitzegerald L.M., Lee N., Adams M.D., Hickey E.K., Berg D.E., Gocayne J.D., Utterback T.R., Peterson J.D., Kelley J.M., Cotton M.D., Weidman J.M., Fujii C., Bowman C., Watthey L., Wallin E., Hayes W.S., Borodovsky M., Karp P.D., Smith H.O., Fraser C.M., Venter J.C. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 1997;388(6642):539–547. doi: 10.1038/41483. [DOI] [PubMed] [Google Scholar]
  • 41.Fraser C.M., Casjens S., Huang W.M., Sutton G.G., Clayton R., Lathigra R., White O., Ketchum K.A., Dodson R., Hickey E.K., Gwinn M., Dougherty B., Tomb J.F., Fleischmann R.D., Richardson D., Peterson J., Kerlavage A.R., Quackenbush J., Salzberg S., Hanson M., Vugt R., Palmer N., Adams M.D., Gocayne J., Weidman J., Utterback T., Watthey L., McDonald L., Artiach P., Bowman C., Garland S., Fuji C., Cotton M.D., Horst K., Roberts K., Hatch B., Smith H.O., Venter J.C. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature. 1997;390(6660):580–586. doi: 10.1038/37551. [DOI] [PubMed] [Google Scholar]
  • 42.Blattner F.R., Plunkett G., 3rd, Bloch C.A., Perna N.T., Burland V., Riley M., Collado-Vides J., Glasner J.D., Rode C.K., Mayhew G.F., Gregor J., Davis N.W., Kirkpatrick H.A., Goeden M.A., Rose D.J., Mau B., Shao Y. The complete genome sequence of Escherichia coli K-12. Science. 1997;277:1453–1474. doi: 10.1126/science.277.5331.1453. [DOI] [PubMed] [Google Scholar]
  • 43.Goffeau A., Barrell B.G., Bussey H., Davis R.W., Dujon B., Feldmann H., Galibert F., Hoheisel J.D., Jacq C., Johnston M., Louis E.J., Mewes H.W., Murakami Y., Philippsen P., Tettelin H., Oliver S.G. Life with 6000 genes. Science. 1996;274(5287):546. doi: 10.1126/science.274.5287.546. [DOI] [PubMed] [Google Scholar]
  • 44.Cole S.T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S.V., Eiglmeier K., Gas S., Barry C.E., 3rd, Tekaia F., Badcock K., Basham D., Brown D., Chillingworth T., Connor R., Davies R., Devlin K., Feltwell T., Gentles S., Hamlin N., Holroyd S., Hornsby T., Jagels K., Krogh A., McLean J., Moule S., Murphy L., Oliver K., Osborne J., Quail M.A., Rajandream M.A., Rogers J., Rutter S., Seeger K., Skelton J., Squares R., Squares S., Sulston J.E., Taylor K., Whitehead S., Barrell B.G. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998;393(6685):537–544. doi: 10.1038/31159. [DOI] [PubMed] [Google Scholar]
  • 45.Coenye T., Vandamme P. Diversity and significance of Burkholderia. Environ Microbiol. 2003;5(9):719–729. doi: 10.1046/j.1462-2920.2003.00471.x. [DOI] [PubMed] [Google Scholar]
  • 46.Fries M.R., Forney L.J., Tiedje J.M. Phenol-and toluene-degrading microbial populations from an aquifer in which successful trichloroethene cometabolism occurred. Appl Environ Microbiol. 1997;63:1523–1530. doi: 10.1128/aem.63.4.1523-1530.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Gioia J., Yerrapragada S., Qin X., Jiang H., Igboeli O.C., Muzny D., Dugan-Rocha S., Ding Y., Hawes A., Liu W., Perez L., Kovar C., Dinh H., Lee S., Nazareth L., Blyth P., Holder M., Buhay C., Tirumalai M.R., Liu Y., Dasgupta I., Bokhetache L., Fujita M., Karouia F., Eswara Moorthy P., Siefert J., Uzman A., Buzumbo P., Verma A., Zwiya H., McWilliams B.D., Olowu A., Clinkenbeard K.D., Newcombe D., Golebiewski L., Petrosino J.F., Nicholson W.L., Fox G.E., Venkateswaran K., Highlander S.K., Weinstock G.M. Paradoxical DNA Repair and Peroxide Resistance Gene Conservation in Bacillus pumilus SAFR-032. PLoS ONE. 2007;2(9):e928. doi: 10.1371/journal.pone.0000928. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 48.Feng L., Wang W., Cheng J., Ren Y., Zhao G., Gao C., Tang Y., Liu X., Han W., Peng X., Liu R., Wang L. Genome and proteome of long-chain alkane degrading Geobacillus thermodenitrificans NG80-2 isolated from a deep-subsurface oil reservoir. Proc Natl Acad Sci. 2007;104(13):5602–5607. doi: 10.1073/pnas.0609650104. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Hogg J.S., Hu F.Z., Janto B., Boissy R., Hayes J., Keefe R., Post J.C., Ehrlich G.D. Characterization and modeling of the Haemophilus influenzae core and supragenomes based on the complete genomic sequences of Rd and 12 clinical nontypeable strains. Genome Biol. 2007;8(6):R103. doi: 10.1186/gb-2007-8-6-r103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Torsvik V., Goksøyr J., Daae F.L. High diversity in DNA of soil bacteria. Appl Environ Microbiol. 1990;56:782–787. doi: 10.1128/aem.56.3.782-787.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Amann K.I., Ludwig W., Schleifer K.H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59:143–169. doi: 10.1128/mr.59.1.143-169.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Pace N.R. A molecular view of microbial diversity and its biosphere. Science. 1997;276:734–740. doi: 10.1126/science.276.5313.734. [DOI] [PubMed] [Google Scholar]
  • 53.Hugenholtz P. Exploring prokaryotic diversity in the genomic era. Genome Biol. 2002;3:1–8. doi: 10.1186/gb-2002-3-2-reviews0003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Handelsman J., Rondon M.R., Brady S.F., Clardy J., Goodman R.M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem Biol. 1998;5:R245–249. doi: 10.1016/S1074-5521(98)90108-9. [DOI] [PubMed] [Google Scholar]
  • 55.Schloss P.D., Handelsman J. Biotechnological prospects from metagenomics. Curr Opin Biotechnol. 2003;14:303–310. doi: 10.1016/S0958-1669(03)00067-3. [DOI] [PubMed] [Google Scholar]
  • 56.Schmeisser C., Steele H., Streit W.R. Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol. 2007;75:955–962. doi: 10.1007/s00253-007-0945-5. [DOI] [PubMed] [Google Scholar]
  • 57.Lorenz P., Eck J. Metagenomics and Industrial applications. Nature. 2005;3:510–516. doi: 10.1038/nrmicro1161. [DOI] [PubMed] [Google Scholar]
  • 58.Handelsman J. Genomics of uncultured microorganisms. Mol Microbiol Rev. 2004;68:669–685. doi: 10.1128/MMBR.68.4.669-685.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 59.Riesenfeld C.S., Schloss P.D., Handelsman J. Metagenomics: Genomic Analysis of microbial communities. Annu Rev Genet. 2004;38:525–552. doi: 10.1146/annurev.genet.38.072902.091216. [DOI] [PubMed] [Google Scholar]
  • 60.Kimura N. Metagenomics: Access to Unculturable microbes in the environment. Microbes Environ. 2006;21:201–205. doi: 10.1264/jsme2.21.201. [DOI] [Google Scholar]
  • 61.Henne A., Daniel R., Schmitz R.A., Gottschalk G. Construction of environmental DNA libraries in Escherichia coli and screening for the presence of genes conferring utilization of 4-hydroxybutyrate. Appl Environ Microbiol. 1999;65:3901–3907. doi: 10.1128/aem.65.9.3901-3907.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Rondon M.R., August P.R., Bettermann A.D., Brady S.F., Grossman T.H., Liles M.R., Loiacono K.A., Lynch B.A., MacNeil I.A., Minor C., Tiong C.L., Gilman M., Osburne M.S., Clardy J., Handelsman J., Goodman R.M. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol. 2000;66:2541–2547. doi: 10.1128/AEM.66.6.2541-2547.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Stein J.L., Marsh T.L., Wu K.Y., Shizuya H., DeLong E.F. Characterization of uncultivated prokaryotes: Isolation and analysis of a 40-kilobase-pair genome fragment front a planktonic marine archaeon. J Bacteriol. 1996;178:591–599. doi: 10.1128/jb.178.3.591-599.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 64.Turnbaugh P.J., Ley R.E., Mahowald M.A., Magrini V., Mardis E.R., Gordon J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–1031. doi: 10.1038/nature05414. [DOI] [PubMed] [Google Scholar]
  • 65.Diaz-Torres M.L., Villedieu N., Hunt R., McNab D.A., Spratt A. E., Mullany P., Wilson M. Determining the antibiotic resistant potential of the indigenous oral microbiota of humans using a metagenomic approach. FEMS Microbiol Lett. 2006;258:257–262. doi: 10.1111/j.1574-6968.2006.00221.x. [DOI] [PubMed] [Google Scholar]
  • 66.Breitbart M., Hewson I., Felts B., Mahaffy J.M., Nulton J., Salamon P., Rohwer F. Metagenomic Analyses of an Uncultured Viral Community from Human Feces. J Bacteriol. 2003;185:6220–6223. doi: 10.1128/JB.185.20.6220-6223.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 67.Tyson G.W., Chapman J., Hugenholtz P., Allen E.E., Ram R.J., Richardson P.M., Solovyev V.V., Rubin E.M., Rokhsar D.S., Banfield J.F. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 2004;428:37–43. doi: 10.1038/nature02340. [DOI] [PubMed] [Google Scholar]
  • 68.Courtois S., Cappellano C.M., Ball M., Francou F.X., Normand P., Helynck G., Martinez A., Kolvek S.J., Hopke J., Osburne M.S., August P.R., Nalin R., Guerineau M., Jeannin P., Simonet P., Pernodet J.L. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl Environ Microbiol. 2003;69:49–55. doi: 10.1128/AEM.69.1.49-55.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Harry M., Gambier B., Bourezgui Y., Garnier-Sillam E. Evaluation of purification procedures for DNA extracted from organic rich samples: interference with humic substances. Analusis. 1999;27:439–442. doi: 10.1051/analusis:1999270439. [DOI] [Google Scholar]
  • 70.Porteous L.A., Armstrong J.L. Recovery of bulk DNA from soil by a rapid, small-scale extraction method. Curr Microbiol. 1991;22:345–348. doi: 10.1007/BF02092152. [DOI] [Google Scholar]
  • 71.Tsai Y.L., Olson B.H. Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol. 1991;57(4):1070–1074. doi: 10.1128/aem.57.4.1070-1074.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 72.Tsai Y.L., Olson B.H. Detection of low numbers of bacterial cells in soils and sediments by polymerase chain reaction. Appl Environ Microbiol. 1992;58:754–757. doi: 10.1128/aem.58.2.754-757.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Jacobsen, Carsten S., Rasmussen Ole F. Development and Application of a New Method To Extract Bacterial DNA from Soil Based on Separation of Bacteria from Soil with Cation-Exchange Resin. Appl Environ Microbiol. 1992;58(8):2458–2462. doi: 10.1128/aem.58.8.2458-2462.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Tebbe C.C., Vahjen W. Interference of humic acids and DNA extracted directly from soil in detection and transformation of recombinant DNA from bacteria and a yeast. Appl Environ Microbiol. 1993;59:2657–2665. doi: 10.1128/aem.59.8.2657-2665.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Yeates M.R., Gillings A.D., Davison, Altavilla N., Veal D.A. PCR amplification of crude microbial DNA extracted from soil. Lett Appl Microbiol. 1997;25(4):303–307. doi: 10.1046/j.1472-765X.1997.00232.x. [DOI] [PubMed] [Google Scholar]
  • 76.Krsek M., Wellington E.M.H. Comparison of different methods for the isolation and purification of total community DNA from soil. J Microbiol Methods. 1999;39:1–16. doi: 10.1016/S0167-7012(99)00093-7. [DOI] [PubMed] [Google Scholar]
  • 77.Zhou J., Bruns M.A., Tiedje J.M. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62:316–332. doi: 10.1128/aem.62.2.316-322.1996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 78.Berry A.E., Chiocchini C., Selby T., Sosio M., Wellington E.M.H. Isolation of high molecular weight DNA from soil for cloning into BAC vectors. FEMS Microbiol Lett. 2003;223:15–20. doi: 10.1016/S0378-1097(03)00248-9. [DOI] [PubMed] [Google Scholar]
  • 79.Daniel R. The metagenomics of soil. Nature. 2005;3:470–477. doi: 10.1038/nrmicro1160. [DOI] [PubMed] [Google Scholar]
  • 80.Handelsman J., Liles M., Mann D., Riesenfeld C., Goodman R.M. Cloning the metagenome: Culture-independent access to the diversity and functions of the uncultivated microbial world. Meth in Microbiol. 2002;33(13):241–255. doi: 10.1016/S0580-9517(02)33014-9. [DOI] [Google Scholar]
  • 81.Knietsch A., Waschkowitz T., Bowien S., Henne A., Daniel R. Construction and Screening of Metagenomic Libraries Derived from Enrichment Cultures: Generation of a Gene Bank for Genes Conferring Alcohol Oxidoreductase Activity on Escherichia coli. Appl Environ Microbiol. 2003;69:1408–1416. doi: 10.1128/AEM.69.3.1408-1416.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 82.Pace N.R., Stahl D.A., Lane D.J., Olsen G.J. Analyzing natural microbial populations by rRNA sequences. ASM News. 1985;51:4–12. [Google Scholar]
  • 83.Schmidt T.M., DeLong E.F., Pace N.R. Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing. J Bacteriol. 1991;173:4371–4378. doi: 10.1128/jb.173.14.4371-4378.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Yun J., Kang S., Park S., Yoon H., Kim M.J., Heu S., Ryu S. Characterization of a Novel Amylolytic Enzyme Encoded by a Gene from a Soil-Derived Metagenomic Library. Appl Environ Microbiol. 2004;70:7229–7235. doi: 10.1128/AEM.70.12.7229-7235.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Ranjan R., Grover A., Kapardar R.K., Sharma R. Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem Biophy Res Comm. 2005;335:57–65. doi: 10.1016/j.bbrc.2005.07.046. [DOI] [PubMed] [Google Scholar]
  • 86.Voget S., Leggewie C., Uesbeck A., Raasch C., Jaeger K.-E., Streit W.R. Prospecting for novel biocatalysts in a soil metagenome. Appl Environ Microbiol. 2003;69:6235–6242. doi: 10.1128/AEM.69.10.6235-6242.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 87.Lee S.W., Won K., Lim H.K., Kim J.C., Choi G.J., Cho K.Y. Screening for novel lipolytic enzymes from uncultured soil microorganisms. Appl Microbiol Biotechnol. 2004;65:720–726. doi: 10.1007/s00253-004-1722-3. [DOI] [PubMed] [Google Scholar]
  • 88.Béjá O., Suzuki M.T., Koonin E.V., Aravind L., Hadd L., Nguygen L.P., Villacorta R., Amjadi M., Garrigues C. Construction of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ Microbiol. 2000;2:516–529. doi: 10.1046/j.1462-2920.2000.00133.x. [DOI] [PubMed] [Google Scholar]
  • 89.Béjá O. To BAC or not to BAC: marine ecogenomics. Curr opin Biotechnol. 2004;15:187–190. doi: 10.1016/j.copbio.2004.03.005. [DOI] [PubMed] [Google Scholar]
  • 90.Wang G.Y., Graziani E., Waters B., Pan W., Li X., McDemott J., Meurer G., Saxena G., Anderson R.J., Davies J. Novel natural products from soil DNA libraries in a Streptomycete host. Org Lett. 2000;2:2401–2404. doi: 10.1021/ol005860z. [DOI] [PubMed] [Google Scholar]
  • 91.Ginolhac A., Jarrin C., Gillet B., Robe P., Pujic P., Tuphile K., Bertrand H., Vogel T.M., Perrière G., Simonet P., Nalin R. Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. Appl Environ Microbiol. 2004;70:5522–5527. doi: 10.1128/AEM.70.9.5522-5527.2004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 92.Piel J., Hui D., Fusetani N., Matsunaga S. Targetting modular polyketide synthases with iteratively acting acyltransferases from metagenomes of uncultured bacterial consortia. Environ Microbiol. 2004;6:921–927. doi: 10.1111/j.1462-2920.2004.00531.x. [DOI] [PubMed] [Google Scholar]
  • 93.Béjá O., Aravind L., Koonin E.V., Suzuki M.T., Hadd A., Nguyen L.P., Jovanovich S.B., Gates C.M., Feldman R.A., Spudich J.L., Spudich E.N., DeLong E.F. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science. 2000;289:1902–1906. doi: 10.1126/science.289.5486.1902. [DOI] [PubMed] [Google Scholar]
  • 94.Sebat J.L., Colwell F.S., Crawford R.L. Metagenomic profiling: microarray analysis of an environmental genomic library. Appl Environ Microbiol. 2003;69:4927–4934. doi: 10.1128/AEM.69.8.4927-4934.2003. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 95.Rhee J.K., Ahn D.G., Kim Y.G., Oh J.W. New thermophilic and thermostable esterase with sequence similarity to the hormone-sensitive lipase family, cloned from a metagenomic library. Appl Environ Microbiol. 2005;71:817–825. doi: 10.1128/AEM.71.2.817-825.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 96.Kim Y.J., Choi G.S., Kim S.B., Yoon G.S., Kim Y.S., Ryu Y.W. Screening and characterization of a novel esterase from a metagenomic library. Prot Express Purif. 2006;45(2):315–323. doi: 10.1016/j.pep.2005.06.008. [DOI] [PubMed] [Google Scholar]
  • 97.Uchiyama T., Abe T., Ikemura T., Watanabe K. Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nature Biotechnol. 2005;23:88–93. doi: 10.1038/nbt1048. [DOI] [PubMed] [Google Scholar]
  • 98.Jiae Y & Ryu S (2005) Screening for novel enzymes from metagenome and SIGEX, as a way to improve it. Microbial cell factories 4: Article number 8, 5p [DOI] [PMC free article] [PubMed]
  • 99.Williamson L.L., Borlee B.R., Schloss P.D., Guan C., Allen H.K., Handelsman J. Intracellular screen to identify metagenomic clones that induce or inhibit a quorum sensing biosensor. Appl Environ Microbiol. 2005;71:6335–6344. doi: 10.1128/AEM.71.10.6335-6344.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 100.Lee M.H., Lee C.H., Oh T.K., Song J.K., Yoon J.H. Isolation and Characterization of a novel lipase from a meta-genomic library of tidal flat sediments: Evidence for a new family of bacterial lipases. Environ Microbiol. 2006;72:7406–7409. doi: 10.1128/AEM.01157-06. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 101.Gillespie D.E., Brady S.F., Bettermann A.D., Cianciotto N.P., Liles M.R., Rondon M.R., Clardy J., Goodman R.M., Handelsman J. Isolation of Antibiotics Turbomycin A and B from a Metagenomic Library of Soil Microbial DNA. Appl Environ Microbiol. 2002;68:4301–4306. doi: 10.1128/AEM.68.9.4301-4306.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Brady S.F., Chao C.J., Handelsman J., Clardy J. Cloning and Heterologous Expression of a Natural Product Biosynthetic Gene Cluster from eDNA. Org Lett. 2001;3(13):1981–1983. doi: 10.1021/ol015949k. [DOI] [PubMed] [Google Scholar]
  • 103.Kellner R.L.L., Dettner K. Differential efficacy of toxic pederin in deterring potential arthropod predators of Paederus (Coleoptera: Staphylinidae) offspring. Oecologia. 1996;107:293–300. doi: 10.1007/BF00328445. [DOI] [PubMed] [Google Scholar]
  • 104.Kube M., Beck A., Meyerdierks A., Amann R., Reinhardt R., Rabus R. A catabolic gene cluster for anaerobic benzoate degradation in methanotrophic microbial Black Sea mats. Syst and Appl Microbiol. 2005;28:287–294. doi: 10.1016/j.syapm.2005.02.006. [DOI] [PubMed] [Google Scholar]
  • 105.Ley R.E., Turnbaugh P.J., Klein S., Gordon J.I. Human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a. [DOI] [PubMed] [Google Scholar]
  • 106.Venter J.C., Remington K., Heidelberg J.F., Halpern A.L., Rusch D., Eisen J.A., Wu D., Paulsen I., Nelson K. E., Nelson W., Fouts D.E., Levy S., Knap A.H., Lomas M.W., Nealson K., White O., Peterson J., Hoffman J., Parsons R., Baden-Tillson H., Pfannkoch C., Rogers Y.H., Smith H.O. Environmental genome shotgun sequencing of the Sargasso Sea. Science. 2004;304:66–74. doi: 10.1126/science.1093857. [DOI] [PubMed] [Google Scholar]
  • 107.Rodriguez-Brito B, Rohwer F & Edwards RA (2006) An application of statistics to comparative metagenomics. BMC Bioinformatics 7: art. no. 162 [DOI] [PMC free article] [PubMed]
  • 108.DeLong E.F. Microbial community genomics in the ocean. Nat Rev. 2005;3:459–469. doi: 10.1038/nrmicro1158. [DOI] [PubMed] [Google Scholar]
  • 109.Mavromatis K., Ivanova N., Barry K., Shapiro H., Goltsman E., McHardy A.C., Rigoutsos I., Salamov A., Korzeniewski F., Land M., Lapidus A., Grigoriev I., Richardson P., Hugenholtz P., Kyrpides N.C. Use of simulated data sets to evaluate the fidelity of metagenomic processing methods. Nat Methods. 2007;4:479–480. doi: 10.1038/nmeth1043. [DOI] [PubMed] [Google Scholar]
  • 110.Schloss P.D., Handelsman J. Metagenomics for studying unculturable microorgansisms: cutting the Gordian Knot. Genome Biol. 2005;6(8):229. doi: 10.1186/gb-2005-6-8-229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111.Lim H.K., Chung E.J., Kim J.C., Choi G.J., Jang K.S., Chung Y.R., Cho K.Y., Lee S.W. Characterization of a forest soil metagenome clone that confers indirubin and indigo production on Escherichia coli. Appl Environ Microbiol. 2005;71:7768–7777. doi: 10.1128/AEM.71.12.7768-7777.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES