Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2008 May 1;48(1):134–141. doi: 10.1007/s12088-008-0013-6

Biodegradation of γ-hexachlorocyclohexane (Lindane) by a non-white rot fungus conidiobolus 03-1-56 isolated from litter

Varima Nagpal 1, M C Srinivasan 1, K M Paknikar 1,
PMCID: PMC3450201  PMID: 23100707

Abstract

Biodegradation of chlorinated pesticide γ-hexachlorocyclohexane (lindane) by a nonwhite rot fungus Conidiobolus 03-1-56 is reported for the first time. Conidiobolus 03-1-56, a phycomyceteous fungus isolated from litter, completely degraded lindane on the 5th day of incubation in the culture medium, and GC-ECD studies confirmed that lindane removal did not occur via adsorption on the fungal biomass. Degradation studies using different medium compositions showed that nitrogen/carbon limiting conditions (stress conditions) and presence of veratryl alcohol, induced the secretion of extracellular oxidative enzymes, which enhanced the rate of lindance biodegradation. Under optimum nutrient-limiting conditions, GC-ECD and GC-MS analysis showed complete absence of any degradation metabolite, indicating that lindane was completely mineralized. Assays for tannic acid utilization and lignin peroxidase showed similar enzymatic profiles between Conidiobolus 03-1-56 and standard white rot fungi Pleurotus ostreatus 1200 and Trametes versicolor 1086. Although Conidiobolus 03-1-56 showed a reduced enzyme activity compared to white rot fungi, preliminary evidence indicates that enzymes responsible for lignin degradation by white rots play a key role in lindane degradation by Conidiobolus 03-1-56.

Keywords: Conidiobolus 03-1-56, Lindane, Non white — rot, Lignin peroxidases

Full Text

The Full Text of this article is available as a PDF (210.1 KB).

References

  • 1.Deo P.G., Karanth N.G., Karanth N.G.K. Biodegradation of hexachlorocyclohexane isomers in soil and food environment. CRC Crit Rev Microbiol. 1994;20:57–78. doi: 10.3109/10408419409113546. [DOI] [PubMed] [Google Scholar]
  • 2.Bachman A., Walet P., Wijnen P., Bruin W., Huntjens J.L.M., Roelofsen W., et al. Biodegradation of α-and β-hexachlorocyclohexane in soil slurry under different redox conditions. Appl Environ Microbiol. 1988;54:143–149. doi: 10.1128/aem.54.1.143-149.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Frankenberger W.T. Temperature and pH effects on biodegradation of hexachlorocyclohexane isomers in water soil and soil slurry. J Agric Food Chem. 2002;50:5070–5076. doi: 10.1021/jf0204304. [DOI] [PubMed] [Google Scholar]
  • 4.Johri A.K., Dua M., Tuteja D., Saxena R., Saxena D.M., Lal R. Degradation of alpha, beta, gamma and delta-hexachlorocyclohexanes by Pseudomonas paucimobilis. Biotechnol Lett. 1998;20:885–887. doi: 10.1023/A:1005323811769. [DOI] [Google Scholar]
  • 5.Mecksongsee B., Guthrie F.E. Degradation of chlorinated hydrocarbon insecticides by certain bacteria in broth culture. J Elisha Mitchel Sci Soc. 1965;81:81–89. [Google Scholar]
  • 6.Jagnow G., Haider K., Ellwardt P.C. Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria. Arch Microbiol. 1977;115:285–290. doi: 10.1007/BF00446454. [DOI] [PubMed] [Google Scholar]
  • 7.Heritage A., MacRae I. Identification of intermediates formed during degradation of hexachlorocyclohexanes by Clostridium sphenoides. Appl Environ Microbiol. 1977;33:1295–1297. doi: 10.1128/aem.33.6.1295-1297.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Haider Degradation and metabolization of lindane and other hexachlorocyclohexane isomers by anaerobic and aerobic soil organisms. Z Naturforsch. 1979;34C:1066–1069. [Google Scholar]
  • 9.Boyle A.W., Häggblom M.M., Young L.Y. Dehalogenation of Lindane (γ-hexachlorocyclohexane) by anaerobic bacteria from marine sediments and by sulphate-reducing bacteria. FEMS Microbiol Ecol. 1999;29:379–387. [Google Scholar]
  • 10.Gupta A., Kaushik C.P., Kaushik A. Degradation of hexachlorocyclohexane (HCH, α, β and δ) by Bacillus circulans and Bacillus brevis isolated from soil contaminated with HCH. Soil Biol Biochem. 2000;32:1803–1805. doi: 10.1016/S0038-0717(00)00072-9. [DOI] [Google Scholar]
  • 11.Shah M.M., Barr D.P., Chung M., Aust S.D. Use of white rot fungi in the degradation of environmental chemicals. Toxicol Lett. 1992;6465:493–601. doi: 10.1016/0378-4274(92)90224-8. [DOI] [PubMed] [Google Scholar]
  • 12.Bumpus J.A., Tien M., Wright D., Aust S.D. Oxidation of persistent environmental pollutants by a white rot fungus. Science. 1985;228:1434–1436. doi: 10.1126/science.3925550. [DOI] [PubMed] [Google Scholar]
  • 13.Mougin C., Pericaud C., Dubroca J., Asther M. Enhanced mineralization of lindane in soils supplemented with the white rot basidiomycetes Phanerochaete chrysosporium. Soil Biol Biochem. 1997;29:1321–1324. doi: 10.1016/S0038-0717(97)00060-6. [DOI] [Google Scholar]
  • 14.Arisoy M., Kolankaya N. Biodegradation of Lindane by Pleurotus sajorcaju and toxic effects of Lindane and its metabolites on mice. Bull Environ Contam Toxicol. 1997;59:352–359. doi: 10.1007/s001289900485. [DOI] [PubMed] [Google Scholar]
  • 15.Singh B.K., Kuhad R.C. Biodegradation of lindane (gamma-hexachlorocyclohexane) by the white-rot fungus Trametes hirsutus. Lett Appl Microbiol. 1999;28:238–241. doi: 10.1046/j.1365-2672.1999.00508.x. [DOI] [PubMed] [Google Scholar]
  • 16.Singh B.K., Kuhad R.C., Singh A., Tripathi K.K., Ghosh P.K. Microbial degradation of the pesticide lindane (gammahexachlorocyclohexane) Adv Appl Microbiol. 2000;47:269–298. doi: 10.1016/S0065-2164(00)47007-3. [DOI] [PubMed] [Google Scholar]
  • 17.Lee S.M., Koo B.W., Lee S.S., Kim M.K., Choi D.H., Hong E.J., et al. Biodegradation of dibutylphthalate by white rot fungi and evaluation of its estrogenic activity. Enzy Microb Technol. 2004;35:417–423. doi: 10.1016/j.enzmictec.2004.06.001. [DOI] [Google Scholar]
  • 18.Rigas F., Dritsa V., Marchant R., Papadopoulou K., Avramides E.J., Hatzianestis A.I. Biodegradation of lindane by Pleurotus ostreatus via central composite design. Environ Int. 2005;31:195–196. doi: 10.1016/j.envint.2004.09.024. [DOI] [PubMed] [Google Scholar]
  • 19.Sanghi R., Dixit A., Guha S. Sequential batch culture studies for the decolorization of reactive dye by Coriolus verscicolor. Biores Technol. 2006;97:396–400. doi: 10.1016/j.biortech.2005.03.010. [DOI] [PubMed] [Google Scholar]
  • 20.Hattaka A. Lignin modifying enzymes from selected white rot fungi: production and role in lignin degradation. FEMS Microbiol Rev. 1994;13:125–135. doi: 10.1111/j.1574-6976.1994.tb00039.x. [DOI] [Google Scholar]
  • 21.Gadd G.M. Fungi in Bioremediation. Canbridge, UK: Cambridge University Press; 2001. [Google Scholar]
  • 22.Mougin C., Pericaud C., Dubroca J., Asther M. Biotransformation of the insecticide lindane by the white rot basidiomycetes Phanerochaete chrysosporium. Pest Sci. 1996;47:51–60. doi: 10.1002/(SICI)1096-9063(199605)47:1<51::AID-PS391>3.0.CO;2-V. [DOI] [Google Scholar]
  • 23.Tekere M., Ncube I., Read J.S., Zvauya R. Biodegradation of the organochlorine pesticide, lindane by a sub-tropical white-rot fungus in batch and packed bed bioreactor systems. Environmental Technology. 2002;23:199–206. doi: 10.1080/09593332508618422. [DOI] [PubMed] [Google Scholar]
  • 24.Pointing S. Feasibility of bioremediation by white rot fungi. Appl Microbiol Biotechnol. 2001;57:20–33. doi: 10.1007/s002530100745. [DOI] [PubMed] [Google Scholar]
  • 25.Borchert M., Judy J.L. Decolorization of reactive dyes by the white rot fungus Trametes versicolor in sequencing batch reactors. Biotechnol Bioeng. 2001;75:313–321. doi: 10.1002/bit.10026. [DOI] [PubMed] [Google Scholar]
  • 26.Sastry M., Ahmad A., Khan M.I., Kumar R. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci. 2003;85:162–170. [Google Scholar]
  • 27.Tien M., Kirk T.K. Lignin-degrading enzyme from Phanerochaete chrysosporium: purification. characterization and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci USA. 1984;81:2280–2284. doi: 10.1073/pnas.81.8.2280. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Haglund C (1999) Biodegradation of xenobiotic compounds by the white rot fungus Trametes trogii, M.Sc. Dissertation, Uppsala University
  • 29.Faison B.D., Kirk T.K. Factors involved in the Regulation of a Ligninase Activity in Phanerochaete chrysosporium. Appl Environ Microbiol. 1985;49:299–304. doi: 10.1128/aem.49.2.299-304.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Collin P.J., Field J.A., Teunissen P., Dobson A.D.W. Stabilization of lignin peroxidases in white rot fungi by trytophan. Appl Environ Microbiol. 1997;63:2543–2548. doi: 10.1128/aem.63.7.2543-2548.1997. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES