Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2008 May 1;48(1):35–40. doi: 10.1007/s12088-008-0004-7

Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments

Dileep K Singh 1,
PMCID: PMC3450205  PMID: 23100698

Abstract

Biodegradation is a natural process, where the degradation of a xenobiotic chemical or pesticide by an organism is primarily a strategy for their own survival. Most of these microbes work in natural environment but some modifications can be brought about to encourage the organisms to degrade the pesticide at a faster rate in a limited time frame. This capability of microbe is some times utilized as technology for removal of contaminant from actual site. Knowledge of physiology, biochemistry and genetics of the desired microbe may further enhance the microbial process to achieve bioremediation with precision and with limited or no scope for uncertainty and variability in microbe functioning. Gene encoding for enzyme has been identified for several pesticides, which will provide a new inputs in understanding the microbial capability to degrade a pesticide and develop a super strain to achieve the desired result of bioremediation in a short time.

Keywords: Biodegradation, Bioremediation, Pesticide

Full Text

The Full Text of this article is available as a PDF (72.2 KB).

References

  • 1.Stotzky G., Goos R.D., Timonin M.I. Microbial changes occurring in soil as result of storage. Plant Soil. 1962;16:1–19. doi: 10.1007/BF01378154. [DOI] [Google Scholar]
  • 2.Burn R.G. Experimental models in study of soil microbiology. In: Wimpeny J. W. T., editor. Hand Book of Laboratory model systems for Microbial Ecosystems. Florida: CRC Press Boca Raton; 1988. pp. 51–98. [Google Scholar]
  • 3.Hong Q., Zhang Z., Hong Y., Li S. A microcosum study on bioremediation of fenitrothion-contaminated soil using Burkholderia sp. FDS-1. In Bioremediation Biodegradation. 2007;59:55–61. doi: 10.1016/j.ibiod.2006.07.013. [DOI] [Google Scholar]
  • 4.Kumar M., Philip L. Bioremediation of endosulfan contaminated soil and water-optimization of operating conditions in laboratory scale reactors. J Hazardous Materials. 2006;136:354–364. doi: 10.1016/j.jhazmat.2005.12.023. [DOI] [PubMed] [Google Scholar]
  • 5.Henry L., Kishimba M.A. Pesticide residues in Nile tilapia (Oreochromis niloticus) and Nile perch (Lates niloticus) from Southern Lake Victoria, Tanzania. Environ Pollut. 2006;140:348–354. doi: 10.1016/j.envpol.2005.06.029. [DOI] [PubMed] [Google Scholar]
  • 6.Kumar M., Philip L. Enrichment and isolation of a mixed bacterial culture for complete mineralization of endosulfan. J Environ Sci Health B. 2006;41:81–96. doi: 10.1080/03601230500234935. [DOI] [PubMed] [Google Scholar]
  • 7.Kumar M., Philip L. Endosulfan mineralization by bacterial isolates and possible degradation pathway identification. Bioremediation J. 2006;10:179–190. doi: 10.1080/10889860601021415. [DOI] [Google Scholar]
  • 8.Kumar K., Devi S.S., Krishnamurthi K., Kanade G.S., Chakrabarti T. Enrichment and isolation of endosulfan degrading and detoxifying bacteria. Chemosphere. 2007;68:497–488. doi: 10.1016/j.chemosphere.2006.12.076. [DOI] [PubMed] [Google Scholar]
  • 9.Gupta K.G., Sud R.K., Aggarwal P.K., Aggarwal J.C. Effect of baygon (2-isopropoxyphenyl N-methylcarbamateon some biological process and degradation by a Pseudomonas sps. Plant Soil. 1975;42:317–325. doi: 10.1007/BF00010008. [DOI] [Google Scholar]
  • 10.Karns J.S., Mulbry W.W., Nelson J.O., Kearney P.C. Metabolism of Carbofuran by pure bacterial culture. Pest Biochem Physiol. 1986;25:211–217. doi: 10.1016/0048-3575(86)90048-9. [DOI] [Google Scholar]
  • 11.Larkin M.J., Day M.J. Metabolism of carbaryl by three bacterial isolates, Pseudomonas sps. (NCIB 12042 and 12043), Rhodococcus sp (NCIB 12038) from garden soil. J Appl Bacteriol. 1986;60:233–242. doi: 10.1111/j.1365-2672.1986.tb01078.x. [DOI] [PubMed] [Google Scholar]
  • 12.Chaudhry G.R., Ali A.N. Bacterial metabolism of carbofuran. Appl Environ Microbiol. 1988;54:1414–1419. doi: 10.1128/aem.54.6.1414-1419.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Chapalmadugu S., Chaudhry G.R. Hydrolysis of Carbaryl by Pseudomonas sps. And construction of microbial consoritum that completely metabolised carbaryl. Appl Environm Microbiol. 1991;57:744–750. doi: 10.1128/aem.57.3.744-750.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Mulbry W.W., Eaton R.E. Purification and characterization of the N-methylcarbamate hydrolase from Pseudomonas strain OK. Appl Environ Microbiol. 1991;57:3679–3682. doi: 10.1128/aem.57.12.3679-3682.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Head I.M., Cain R.B., Suett D.L. Characterization of carbofuran degrading bacterium and investigation of the role of plasmids in catabolism of the insecticide carbofuran. Arch Microbiol. 1992;158:302–308. doi: 10.1007/BF00245249. [DOI] [PubMed] [Google Scholar]
  • 16.Topp E., Hansen R.S., Ringleberg D.B., White D.C., Wheatcroft R. Isolation and characterization of an n-methylcarbamate insecticide degrading methylotrophic bacterium. Appl Environ Microbiol. 1993;59:3339–3349. doi: 10.1128/aem.59.10.3339-3349.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Kearney P.C., Roberts T. Pesticide remediation in soil and water (Kearney PC and Roberts T eds) Wiley series in agrochemical and plant protection. New York: John Wiley and Sons; 1998. [Google Scholar]
  • 18.Kumari R., Subudhi S., Suar M., Dhingra G., Raina V., Dogra C., Lal S., Meer J.R., Holliger C., Lal R. Cloning and Characterization of lin Genes Responsible for the Degradation of Hexachlorocyclohexane Isomers by Sphingomonas paucimobilis Strain B90. Appl Environ Microbiol. 2002;68:6021–6028. doi: 10.1128/AEM.68.12.6021-6028.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Sutherland T.D., Home I., Harcourt R.L., Russel R.J., Oakeshott J.G. Isolation and characterization of a Mycobacterium strain that metabolizes the insecticide endosulfan. J Appl Microbiol. 2002;93:380–389. doi: 10.1046/j.1365-2672.2002.01728.x. [DOI] [PubMed] [Google Scholar]
  • 20.Hussain S., Arshad M., Saleem M., Khalid A. Biodegradation of α and β endosulfan by soil bacteria. Biodegradation. 2007;18:731–740. doi: 10.1007/s10532-007-9102-1. [DOI] [PubMed] [Google Scholar]
  • 21.Barraga n-Huerta B.E., Costa-Pe’rez C., Peralta-Cruz j., Barrera-Corte J. Biodegration of organochlorine pesticides by bacteria grown in microniches of the porus structure of green bean coffee. In Biodeterioration Biodegradation. 2007;59:239–244. doi: 10.1016/j.ibiod.2006.11.001. [DOI] [Google Scholar]
  • 22.Subhas, Singh D.K. Utilization of monocrotophos as phosphorus source by Pseudomonas aeruginosa F10B and Clavibacter michiganense subsp. insidiosum SBL 11. Canad J of Microbiol. 2003;49:101–109. doi: 10.1139/w03-013. [DOI] [PubMed] [Google Scholar]
  • 23.Das S., Singh D.K. Purification and characterization of phosphotriesterases from Pseudomonas aeruginosa F10B and Clavibacter michiganense subsp. insidiosum SBL11. Canad J of Microbiol. 2006;52:157–168. doi: 10.1139/w05-113. [DOI] [PubMed] [Google Scholar]
  • 24.Weir K.M., Sutherland T.D., Horne I., Russell R.J., Oakeshott J.G. A Single Monooxygenase, Ese, Is Involved in the Metabolism of the Organochlorides Endosulfan and Endosulfate in an Arthrobacter sp. Appl Environ Microbiol. 2006;72:3524–3530. doi: 10.1128/AEM.72.5.3524-3530.2006. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Lal R., Dogra C., Malhotra S., Sharma P., Pal R. Diversity, Distribution and Divergence of lin genes in hexachlorocyclohexane degrading sphingomonads. TRENDS in Biotechnology. 2006;24:121–129. doi: 10.1016/j.tibtech.2006.01.005. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES