Abstract
Spentwash is one of the most complex and cumbersome wastewater with very high BOD, COD and other organic and inorganic toxic constituents. It is dark brown colored and difficult to treat by normal biological process such as activated sludge or anaerobic lagooning. The color is due to the presence of melanoidins, caramels and other polymers. These compounds have anti oxidant properties which render them toxic to microorganisms. Spentwash disposal into the environment is hazardous and has a considerable pollution potential. It affects the aesthetic merit. Its decolorization by physical or chemical methods have been investigated and were found unsuitable. In the recent past, increasing attention has been directed towards utilizing microbial activity for decolorization of spentwash. This review reveals various groups of microorganisms which have potential in spentwash decolorization. The role of enzymes in decolorization and the microbial degradation of individual compounds imparting color to spentwash are also discussed.
Keywords: Decolorization, Spentwash, Melanoidin, Caramel, Marine fungi, Molasses pigment
Full Text
The Full Text of this article is available as a PDF (101.1 KB).
References
- 1.Anonymous (1992) Standard Methods for Examination of Water and Wastewater. American Public Health Association, American Water Works Association, Water Environment Federation, Ed. 14, New Delhi
- 2.Guruswami R. Pollution control in distillery industry. Bombay: National Seminar on Pollution Control in Sugar and Allied Industries; 1988. [Google Scholar]
- 3.Wedzicha B.L., Kaputo M.T. Melanoidins from glucose and glycine: Composition, characteristics and reactivity towards sulphite ion. Food Chem. 1992;43:359–367. doi: 10.1016/0308-8146(92)90308-O. [DOI] [Google Scholar]
- 4.Ivarson K.C., Benzing-purdie L.M. Degradation of melanoidins by soil microorganisms under laboratory conditions. Can J Soil Sci. 1987;67:409–414. doi: 10.4141/cjss87-037. [DOI] [Google Scholar]
- 5.Kitts D.D., Wu C.H., Stich H. F., Powerte W.D. Effect of glucose-glycine maillard reaction products on bacterial and mammalian cells mutagenesis. J Agric Food Chem. 1993;41:2353–2358. doi: 10.1021/jf00036a026. [DOI] [Google Scholar]
- 6.Quinn J.P., Marchant R. The treatment of malt whiskey distillery waste using the fungus Geotrichum candidum. Water Res. 1980;14:545–551. doi: 10.1016/0043-1354(80)90223-7. [DOI] [Google Scholar]
- 7.Robertiellow A. Upgrading of agricultural and agroindustrial wastes: The treatment of distillery effluent (vinasse) in Italy. Agricultural Wastes. 1982;4:387–395. doi: 10.1016/0141-4607(82)90033-6. [DOI] [Google Scholar]
- 8.Rajaram N., Janardhanan K. Effect of distillery effluent on seed germination and early seedling growth of soybean, cowpea, rice and sorghum. Seed Res. 1988;16:173–177. [Google Scholar]
- 9.Sastry C.A., Vichineswary S. Anerobic waste treatment plants. In: Sastry C. A., Hashim M. A., Agamuthu P., editors. Waste Treatment Plants. New Delhi: Narosa Publishing House; 1995. pp. 179–204. [Google Scholar]
- 10.Cerri C.L., Polo A., Reuz F., Lubo M.C., Eduardo B.P. Organic residue of the cane agro-industry I. Physical and Chemical Characteristics. Int Sugarcane J. 1988;92:105A. [Google Scholar]
- 11.Sweeney D.W., Graetz D.A. Application of distilleries waste anaerobic digester effluent to St. Augustine grass. Agri Ecosystem Environ. 1991;33:341–351. doi: 10.1016/0167-8809(91)90056-4. [DOI] [Google Scholar]
- 12.Stumm W., Morgan J.J. Chemical aspects of coagulation. J American Water Assoc. 1962;54:971. [Google Scholar]
- 13.Wesenberg D., Kyriakides I., Agathos S. White rot fungi and their enzymes for the treatment of industrial dye effluents. Biotech Adv. 2003;22:161–187. doi: 10.1016/j.biotechadv.2003.08.011. [DOI] [PubMed] [Google Scholar]
- 14.Tamaki H., Taloaka S., Kishihara S., Fujii S. Decolorization of cane sugar molasses by action of basiodiomycetes. J Japanese Soc Food Sci Tech. 1989;36:827–831. [Google Scholar]
- 15.Kumar S., Vishwanathan L. Production of biomass, carbon dioxide, volatile acids and their interrelationship with decrease in chemical oxygen demand, during distillery waste treatment by bacterial srains. Enzyme Microbial Tech. 1991;13:179–186. doi: 10.1016/0141-0229(91)90176-B. [DOI] [Google Scholar]
- 16.Kumar V., Wati L., Nigam P., Banat I.M., Mcmullan G., Singh D., Marchant R. Microbial decolorization and bioremediation of anerobically digested molasses spentwash effluent by aerobic bacterial cultures. Microbios. 1997;89:81–90. [Google Scholar]
- 17.Agasibagil GA and Jagadeesh KS (2003) Decolorization of biomethanated distillery spentwash. Proceedings of National Workshop on Emerging Biotechnological Methods in Industrial Waste Management, Karad, pp. 26–30
- 18.Ramachandra . Development of indigenous technology (Microbial strains) for the removal of sulfur compounds and colour from distillery effluent. Lucknow: Annual Progress Report, Industrial Toxicology Res Centre; 1993. [Google Scholar]
- 19.Nakazima-kambe T., Shimomura M., Nomura N., Chanpornpong T., Nakahara T. Decolorization of molasses wastewater by Bacillus sp. under thermophilic and anerobic conditions. J Biosci Bioeng. 1999;87:119–121. doi: 10.1016/S1389-1723(99)80021-8. [DOI] [PubMed] [Google Scholar]
- 20.Asthanam AK and Ramachandra (1999) Decoloriztion of distillery effluent by isolated bacterial strains (TA2 + TA4 + SA) using sugarcane molasses as carbon source. Abstract presented in the Annual Conference of Association of Microbiologists of India Conference, held at Bhubaneshwar, pp. 77–79
- 21.Sharma N, Wati L and Singh D (2000) Bioremediation of anerobically digested molasses spentwash by lactic acid bacteria. Abstract presented in AMI Conference, Birla Institute of Scientific Research, Jaipur, November 25–27, pp. 175
- 22.Jagroop D., Dalel S., Poonam N. Decolorization of molasses wastewater by cells of Pseudomonas fluorescens immobilized on porous cellulose carrier. Bioresource Technol. 2001;78:111–114. doi: 10.1016/S0960-8524(00)00163-2. [DOI] [PubMed] [Google Scholar]
- 23.Ghosh M., Ganguli A., Tripathi A.K. Treatment of anerobically digested distillery spentwash in a two-stage bioreactor using Pseudomonas putida and Aeromonas sp. Process Biochem. 2003;7:857–862. [Google Scholar]
- 24.Sirianuntapiboon S., Phothilangka P., Ohmomo S. Decolorization of molasses wastewater by a strain No. BP103 of acetogenic bacteria. Bioresource Tech. 2004;92:31–39. doi: 10.1016/j.biortech.2003.07.010. [DOI] [PubMed] [Google Scholar]
- 25.Sarayu M., Chirayu D., Datta M. Biodegradation and decolorization of anerobically treated distillery spentwash by a novel bacterial consortium. Biores Tech. 2005;98:333–339. doi: 10.1016/j.biortech.2005.12.024. [DOI] [PubMed] [Google Scholar]
- 26.Chavan M.N., Kulkarni M.V., Zope V.P., Mahulikar P.P. Microbial degradation of melanoidins in distillery spentwash by an indigenous isolate. Ind J Biotech. 2006;5:416–421. [Google Scholar]
- 27.Chaturvedi S., Ramchandra V. r. Isolation and characterization of Phragmites australis (L.) rhizosphere bacteria from contaminated site for bioremediation of colored distillery effluent. Ecological Eng. 2006;27:202–207. doi: 10.1016/j.ecoleng.2006.02.008. [DOI] [Google Scholar]
- 28.Sirianuntapiboon S., Somachai P., Ohmomo S., Atthasampunna P. Screening of filamentous fungi having the ability to decolorize molasees pigments. Agric Bio Chem. 1988;52:387–392. [Google Scholar]
- 29.Miranda M.P., Benito G.G., Cristobal N.S., Neito C.H. Color elimination from molasses wastewater by Aspergillus niger. Biores Tech. 1996;57:229–235. doi: 10.1016/S0960-8524(96)00048-X. [DOI] [Google Scholar]
- 30.Dhamankar V.S., Patil P.U. Biochemical decolorization of biomethanated distillery spentwash. Proceedings of Int Soc cane Tech. 2001;24:329–333. [Google Scholar]
- 31.Angayarkanni J., Palaniswamy M., Swaminathan K. Biotreatment of distillery effluent using Aspergilus niveus. Bulletin Env Contamination Toxicol. 2003;70:268–277. doi: 10.1007/s00128-002-0187-2. [DOI] [PubMed] [Google Scholar]
- 32.Shayegan J., Pazuoki M., Afshari A. Continuous decolorization of anerobically digested distillery wastewater. Process Biochem. 2004;40:1323–1329. doi: 10.1016/j.procbio.2004.06.009. [DOI] [Google Scholar]
- 33.Kumar V., Wati L., Nigam P., Banat I.M., Yadav B.S., Singh D., Marchant R. Decolorization and biodegradation of anaerobically digested sugarcane molasses spentwash effluent from biomethanation plants by white-rot fungi. Process Biochem. 1998;33:83–88. doi: 10.1016/S0032-9592(97)00047-2. [DOI] [Google Scholar]
- 34.Raghukumar C., Rivonkar G. Decolorization of molasses spentwash by the white-rot fungus Flavodon flavus isolated from a marine habitat. Appl Microbiol Biotech. 2001;55:510–514. doi: 10.1007/s002530000579. [DOI] [PubMed] [Google Scholar]
- 35.Raghukumar C., Mohandass C., Kamat S., Shailaja M.S. Simultaneous detoxification and decolorization of molasses spentwash by the immobilized white-rot fungus Flavodon flavus isolated from a marine habitat. Enz Microbiol Tech. 2004;35:197–202. doi: 10.1016/j.enzmictec.2004.04.010. [DOI] [Google Scholar]
- 36.Naik N.M. Decolorization of biomethanated spentwash by native microorganisms Ph.D. Thesis. Dharwad: University of Agricultural Sciences; 2007. [Google Scholar]
- 37.Miyata N., Mori T., Iwahori K., Fujita M. Microbial decolorization of melanoidin containing wastewater: Combined use of activated sludge and the fungus Coriolus hirsutus. J Biosci Bioeng. 2000;89:145–150. doi: 10.1016/S1389-1723(00)88728-9. [DOI] [PubMed] [Google Scholar]
- 38.Kahraman S., Yesilada Decolorization and bioremediation of molasses wastewater by white rot fungi in a semi-solid state condition. Folia Microbiol. 2003;48:525–528. doi: 10.1007/BF02931335. [DOI] [PubMed] [Google Scholar]
- 39.Donmez G. Bioaccumulation of the reactive textile dyes by Canadian tropics growing in molasses medium. Enz Microbial Tech. 2002;30:363–366. doi: 10.1016/S0141-0229(01)00511-7. [DOI] [Google Scholar]
- 40.Meehan C., Banat I., Mcmullan G., Nigam P., Smyth F., Merchant R. Decolorization of Remazol Black B using thermo tolerant yeast. Kluyeromyces marxianus IMB3. Env Int. 2000;26:75–79. doi: 10.1016/S0160-4120(00)00084-2. [DOI] [PubMed] [Google Scholar]
- 41.Sirianuntapiboon S., Phothilangka P., Ohmomo S. Decolorization of molasses wastewater by a strain No. BP103 of acetogenic bacteria. Biores Tech. 2004;92:31–39. doi: 10.1016/j.biortech.2003.07.010. [DOI] [PubMed] [Google Scholar]
- 42.Kalavathi D.F., Uma L., Subramanian G. Degradation and metabolization of the pigment-melanoidin in distillery effluent by the marine Cyanobacterium oscillatoria boryana BDU 92181. Enz Microbiol Tech. 2001;29:246–251. doi: 10.1016/S0141-0229(01)00383-0. [DOI] [Google Scholar]
- 43.Watanabe X., Sugi R., Tanaka Y., Hayashida S. Enzymatic decolorization of melanoidin by Coriolus sp. No. 20. Agric Bio Chem. 1982;46:1623–1630. [Google Scholar]
- 44.Ohmomo S., Aoshima I., Tozawa Y., Sakurada H., Ueda K. Purification and some properties of melanoidin decolorizing enzymes P-III and P-IV, from mycelia of Coriolus versicolor Ps4a. Agril Biol Chem. 1985;49:2047–2053. [Google Scholar]
- 45.Kelley R.L., Reddy C.A. Identification of glucose oxidase activity as the primary source of hydrogen peroxide production in ligninolytic cultures of Phanerochaete chrysosporium. Arch Microbiol. 1986;144:248–253. doi: 10.1007/BF00410957. [DOI] [Google Scholar]
- 46.D’souza D.T., Tiwari R., Sah A.H., Raghukumar C. Enhanced production of laccase by a marine fungus during treatment of colored effluents and synthetic dyes. Enzyme Microbial Technol. 2006;38:504–511. doi: 10.1016/j.enzmictec.2005.07.005. [DOI] [Google Scholar]
- 47.Thakkar A.P., Dhamankar V.S., Kapadnis B.P. Biocatalytic decolorization of molasses by Phaenerochete chrysosporium. Bioresource Technol. 2006;97:1377–1381. doi: 10.1016/j.biortech.2005.07.005. [DOI] [PubMed] [Google Scholar]
- 48.Kort MJ (1979) Color in the sugar industry. In: Sugar Science Technol, pp. 97–129
- 49.Morales F., Jimnez-perez S. Free radical scavenging capacity of Maillard reaction products as related to color and fluorescence. Food Chem. 2001;72:119–125. doi: 10.1016/S0308-8146(00)00239-9. [DOI] [Google Scholar]
- 50.Hayase F., Kim S., Kato H. Analysis of the chemical structures of melanoidins by [13]C and [15]N CP-MAS NMR spectrophotometry. Agric Biol Chem. 1986;50:1951–1957. [Google Scholar]
- 51.Cammerer B., Jaluschkov V., Kroh L.W. Carbohydrates structures as part of the melanoidins skeleton. Int Conf Series. 2002;1245:269–273. doi: 10.1016/S0531-5131(02)00890-7. [DOI] [Google Scholar]
- 52.Manisankar P., Rani C., Vishwanathan S. Effect of halides in the electrochemical treatment of distillery effluent. Chemosphere. 2004;57:961–966. doi: 10.1016/j.chemosphere.2004.07.026. [DOI] [PubMed] [Google Scholar]
- 53.Yaylyan V.A., Kaminsky E. Isolation and structural analysis of Maillard polymers: Caramel and melanoidin formation in glycine/glucose model system. Food Chem. 1998;63(1):25–31. doi: 10.1016/S0308-8146(97)00237-9. [DOI] [Google Scholar]
- 54.Patil P.V., Dhamankar V.S. Quantitative analysis of spentwash and molasses for different colorants. Proceedings of Int cane Tech. 1997;48:378–321. [Google Scholar]
- 55.Ohmomo S., Kaneko Y., Sirianuntapiboon S., Somachai P., Atthasampunna P., Nakamura I. Decolorization of molasses wastewater by a thermophilic strain, Aspergillus fumigatus G-2-6. Agril and Bio Chem. 1987;51:3339–3346. [Google Scholar]
- 56.Ohmomo S., Daengsubha W., Yoshikawa H., Yui M., Nozaki K., Nakazima, Nakamura I. Screening of anaerobic bacteria with the ability to decolorize molasses melanoidin. Agric Bio Chem. 1988;52:2429–2435. [Google Scholar]
- 57.Singh D., Nigam P. Disposal and treatment of distillery effluent. In: Moo-Young M., Anderson W. A., Chakrabarty A. M., editors. Environmental Biotechnology: Principles and Applications. Holland: Kluwer Academic Publishers; 1995. pp. 735–750. [Google Scholar]
- 58.Kumar P., chandra R. Decolorization and detoxification of synthetic molasses melanoidins by individual and mixed cultures of Bacillus sp. Biores Tech. 2005;97:2096–2012. doi: 10.1016/j.biortech.2005.10.012. [DOI] [PubMed] [Google Scholar]