Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2008 May 1;48(1):114–127. doi: 10.1007/s12088-008-0011-8

Impact of pesticides on soil microbiological parameters and possible bioremediation strategies

Ashim Chowdhury 1,, Saswati Pradhan 1, Monidipta Saha 1, Nilanjan Sanyal 1
PMCID: PMC3450207  PMID: 23100705

Abstract

Intensive agriculture is spectacularly successful since last couple of decades due to the inputs viz; fertilizers and pesticides along with high yielding varieties. The mandate for agriculture development was to feed and adequate nutrition supply to the expanding population by side the agriculture would be entering to into new area of commercial and export orientation. The attention of public health and proper utilization natural resources are also the main issues related with agriculture development. Concern for pesticide contamination in the environment in the current context of pesticide use has assumed great importance [1]. The fate of the pesticides in the soil environment in respect of pest control efficacy, non-target organism exposure and offsite mobility has been given due consideration [2]. Kinetics and pathways of degradation depend on abiotic and biotic factors [6], which are specific to a particular pesticide and therefore find preference. Adverse effect of pesticidal chemicals on soil microorganisms [3], may affect soil fertility [4] becomes a foreign chemicals major issue. Soil microorganisms show an early warning about soil disturbances by foreign chemicals than any other parameters.

But the fate and behavior of these chemicals in soil ecosystem is very important since they are degraded by various factors and have the potential to be in the soil, water etc. So it is indispensable to monitor the persistence, degradation of pesticides in soil and is also necessary to study the effect of pesticide on the soil quality or soil health by in depth studies on soil microbial activity.

The removal of metabolites or degraded products should be removed from soil and it has now a day’s primary concern to the environmentalist. Toxicity or the contamination of pesticides can be reduced by the bioremediation process which involves the uses of microbes or plants. Either they degrade or use the pesticides by various co metabolic processes.

Keywords: Pesticide, Degradation, Soil Microbial Biomass-C, Soil respiration, FDA, Bioremediation

Full Text

The Full Text of this article is available as a PDF (199.5 KB).

References

  • 1.Zhu G., Wu H., Guo J., Kimaro F.M.E. Microbial degradation of fipronil in clay loam soil. Water Air Soil Poll. 2004;153:35–44. doi: 10.1023/B:WATE.0000019928.67686.b1. [DOI] [Google Scholar]
  • 2.Hafez HFH and Theimann WHP (2003) Persistence and biodegradation of iazinone and imidacloprid in soil. Proc. XII Symp. Pest. Chem., Congress Centre Universita Cattolica, Via Emilia Parmense 84, Piacenza. Pp. 35–42
  • 3.Araújo A.S.F., Monterio R.T.R., Abarkeli R.B. Effect of glyphosate on the microbial activity of two Brazilian soils. Chemosphere. 2003;52:799–804. doi: 10.1016/S0045-6535(03)00266-2. [DOI] [PubMed] [Google Scholar]
  • 4.Schuster E., Schröder D. Side-effects of sequentially applied pesticides on non-target soil microorganisms: field experiments. Soil Biol Biochem. 1990;22:367–373. doi: 10.1016/0038-0717(90)90115-G. [DOI] [Google Scholar]
  • 5.Handa SK, Agnihotri NP and Kulshreshtha G (1999) Effect of pesticide on soil fertility. In Pesticide residues; Significance, Msanagement and analysis. pp 184–198
  • 6.Beigel C., Charnay M.P., Barriuso E. Degradation of formulated and unformulated triticonazole fungicide in soil: effect of application rate. Soil Biol Biochem. 1999;31:525–534. doi: 10.1016/S0038-0717(98)00127-8. [DOI] [Google Scholar]
  • 7.Elliot L.F., Lynch J.M., Papendick R.I. The microbial component of soil quality. In: Stotzky G., Bollag J.M., editors. Soil Biochemistry. Vol. 9. New York, USA: Marcel Dekker, Inc.; 1996. pp. 1–12. [Google Scholar]
  • 8.Doran J.W., Parkin T.B. Defining and assessing soil quality. In: Doran J.W., Coleman D.C., Bezdicek D.F., Stewart B.A., editors. Defining soil quality for sustainable environment. Special Pub. 35. Madison, WI: Soil Science Society of America, Inc.; 1994. pp. 3–21. [Google Scholar]
  • 9.Voos G., Groffman P.M. Relationship between microbial biomass and dissipation of 2,4-D and Dicamba in soil. Biol Fertil Soils. 1997;24:106–110. doi: 10.1007/BF01420229. [DOI] [Google Scholar]
  • 10.Paul E.A., Voroney R.A. Field interpretation of microbial biomass activity and measurements. In: Klug M.J., Reddy C.A., editors. Current perspective in microbial ecology. Washington DC: American Society of Microbiology.; 1989. [Google Scholar]
  • 11.Beelen P.V., Doelman P. Significance and application of microbial toxicity tests in assessing ecotoxicological risks of contaminants in soil and sediment. Chemosphere. 1997;34:455–499. doi: 10.1016/S0045-6535(96)00388-8. [DOI] [Google Scholar]
  • 12.Brookes P.C., Newcombe A.A., Jenkinson D.S. Adenylate energy charge measurement in soil. Soil Biol Biochem. 1987;19:211–217. doi: 10.1016/0038-0717(87)90084-8. [DOI] [Google Scholar]
  • 13.Nannipieri P., Gregos S., Ceccanti B. Ecological significance of the biological activity in soil. In: Smith J.L., Paul E.A., editors. Soil Biochemistry. Vol. 6. New York, USA: Marcel Dekker, Inc.; 1990. pp. 293–354. [Google Scholar]
  • 14.Torstenssen L., Stenstorm J. Basic respiration rate as a tool for prediction of pesticide persistence in soil. Toxic Assess. 1986;1:57–72. doi: 10.1002/tox.2540010106. [DOI] [Google Scholar]
  • 15.Anderson T.H., Domsch K.H. Determination of eco-physiological maintenance requirements of soil micro-organisms in a dormant state. Biol Fertil Soils. 1985;1:81–89. doi: 10.1007/BF00255134. [DOI] [Google Scholar]
  • 16.Dick R.P. Soil enzyme activities as indicators of soil quality. In: Doran D.C., Coleman D.F., Bezdicek, Stewart B.A., editors. Defining soil quality for sustainable environment Special Pub. 35. JW. Madison, WI: Soil Science Society of America, Inc.; 1994. pp. 107–124. [Google Scholar]
  • 17.Schnurer J., Rosswall T. Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbial. 1982;43:1256–1261. doi: 10.1128/aem.43.6.1256-1261.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Lundgren B. Fluorescein diacetate as a statin of metabolically active bacteria in soil. Oikos. 1981;36:17–22. doi: 10.2307/3544373. [DOI] [Google Scholar]
  • 19.Topp E., Vallayes T., Soulas G. Pesticides: Microbial degradation and effects on microorganisms. In: Elsas J.D., Trevors J.T., Wellington E.M.H., editors. Modern soil microbiology. New York. USA: Mercel Dekker, Inc.; 1997. pp. 547–575. [Google Scholar]
  • 20.Gupta S., Gajbhiye V.T. Effect of concentration, moisture and soil type on the dissipation of flufenacet from soil. Chemosphere. 2002;47:901–906. doi: 10.1016/S0045-6535(02)00017-6. [DOI] [PubMed] [Google Scholar]
  • 21.Prakash N.B., Suseela Devi L. Persistence of butachlor in soils under different moisture regime. J Indian Soc Soil Sci. 2000;48:249–256. [Google Scholar]
  • 22.Gold R.E., Howell H.N., Pawson B.M., Wright M.S., Lutz J.L. Persistence and bioavailability of termicides to subterranean termites from five soils types and location in Texas. Sociobiol. 1996;28:337–363. [Google Scholar]
  • 23.Jones W.J., Ananyeva N.D. Correlations between pesticide transformation rate and microbial respiration activity in soil of different ecosystems. Biol Fertil Soils. 2001;33:477–483. doi: 10.1007/s003740100365. [DOI] [Google Scholar]
  • 24.Walter-Echols G., Lichtenstein E.P. Movement and metabolism of 14C-phorate in a flooded soil system. J Agri Food Chem. 1978;26:599–604. doi: 10.1021/jf60217a005. [DOI] [Google Scholar]
  • 25.Burns R.G. Factors affecting pesticides loss from soil. In: Paul E. A., McLaren A. D., editors. Soil Biochemistry. Vol. 4. New York. USA: Marcel Dekker, Inc.; 1975. pp. 103–141. [Google Scholar]
  • 26.Racke K.D., Skidmore M.W., Hamilton D.J., Unsworth J.B., Miyamoto J., Cohen S.Z. Pesticide fate in tropical soils. Pure and Appl Chem. 1997;69:1349–1371. doi: 10.1351/pac199769061349. [DOI] [Google Scholar]
  • 27.Alexander M. Introduction to soil microbiology. 2nd Edn. New Delhi: Wiley Eastern Limited; 1977. [Google Scholar]
  • 28.Jitender K, Kumar J and Prakash J (1993) Persistence of thiobencarb and butachlor in soil incubated at different temperatures. In: Integrated weed management for sustainable agriculture. Proc. Indian Soc. Weed. Sci. Int. Seminar. Hisar, India. Pp. 123–124
  • 29.Hicks R.J., Stotzky G., Voris P.V. Review and evaluation of the effects of xenobiotic chemicals on microorganisms in soil. Adv Appl Microbiol. 1990;35:195–253. doi: 10.1016/S0065-2164(08)70245-4. [DOI] [PubMed] [Google Scholar]
  • 30.Reddy B.R., Sethunathan N. Salinity and the persistence of parathion in flooded soil. Soil Biol Biochem. 1985;17:235–239. doi: 10.1016/0038-0717(85)90120-8. [DOI] [Google Scholar]
  • 31.Perucci P., Dumontet S., Bufo S.A., Mazzatura A., Casucci C. Effects of organic amendments and herbicide treatment on soil microbial biomass. Biol Fertil Soils. 2000;32:17–23. doi: 10.1007/s003740000207. [DOI] [Google Scholar]
  • 32.Walker N. Microbial degradation of plant protection chemicals. In: Walker N., editor. Soil Microbiology. London: Butterwoths.; 1975. pp. 181–194. [Google Scholar]
  • 33.Thom E., Ottow J.C.G., Benckiser G. Degradation of the fungicide difenoconazole in a silt loam soil as affected by pretreatment and organic amendement. Environ Poll. 1997;96:409–414. doi: 10.1016/S0269-7491(97)00037-7. [DOI] [PubMed] [Google Scholar]
  • 34.Yoshida T. Soils and Rice. Philippines: International Rice Research Institute; 1978. Microbial metabolism in rice soils; pp. 445–463. [Google Scholar]
  • 35.Barua A.S., Saha J., Chaudhuri S., Chowdhury A., Adityachaudhury N. Degradation of Pendimethalin by Soil. Fungi Pestic Sci. 1990;29(4):419–425. doi: 10.1002/ps.2780290406. [DOI] [Google Scholar]
  • 36.Chakraborty S.K., Chowdhury A., Bhattacharyya A., Ghosh S., Pan S., Waters R., Adityachaudhury N. Microbial Degradation of Oxidiazon by Soil Fungus Fusarium. J Agric Food Chem. 1995;43:2964–2969. doi: 10.1021/jf00059a035. [DOI] [Google Scholar]
  • 37.Chakraborty S.K., Bhattacharyya A., Chowdhury A. Degradation of Oxyflurfen by Azotobacter chroococcum(Beijerink) Bull Environ Contam Toxicol. 2002;69:203–209. doi: 10.1007/s00128-002-0048-z. [DOI] [PubMed] [Google Scholar]
  • 38.Adhya T.K., Wahid P.A., Sethunathan N. Persistence and biodegradation of selected organophosphorus insecticides in flooded versus non-flood soils. Biol Fertil Soils. 1987;4:36–40. [Google Scholar]
  • 39.Banerjee A., Padhi S., Adhya T.K. Persistence and biodegradation of vinclozolin in tropical rice soils. Pestic Sci. 1999;55:1177–1181. doi: 10.1002/(SICI)1096-9063(199912)55:12<1177::AID-PS70>3.0.CO;2-0. [DOI] [Google Scholar]
  • 40.Karpouzas D.G., Walker A., Williams R.J.F., Drennan D.S. Evidence for the enhanced biodegradation of ethoprophos and carbofuran in soils from Greece and the UK. Pest Sci. 1999;55:301–311. doi: 10.1002/(SICI)1096-9063(199903)55:3<301::AID-PS897>3.0.CO;2-F. [DOI] [Google Scholar]
  • 41.Sukul P., Spiteller M. Influence of biotic and abiotic factors on dissipating metalaxyl in soil. Chemosphere. 2001;45:941–947. doi: 10.1016/S0045-6535(01)00010-8. [DOI] [PubMed] [Google Scholar]
  • 42.Bailey A.M., Coffey M.D. Biodegradation of Metalaxyl in avocado soils. Phytopathology. 1985;74:135–137. [Google Scholar]
  • 43.Droby S., Coffey M.D. Biodegradation processes and the nature of metabolism of metalaxyl in soil. Ann Appl Biol. 1991;118:543–553. doi: 10.1111/j.1744-7348.1991.tb05344.x. [DOI] [Google Scholar]
  • 44.Burns R.G., Edwards J.A. Pesticide breakdown by soil enzymes. Pest Sci. 1980;11:506–512. doi: 10.1002/ps.2780110508. [DOI] [Google Scholar]
  • 45.Powlson D.S. The soil microbial biomass: before, beyond and back. In: Ritz K., Dighton J., Giller K.E., editors. Beyond the biomass. Chichester(UK): Wiley; 1994. pp. 3–20. [Google Scholar]
  • 46.Sparling G.P. The Soil Biomass. In: Vaughan D., Malcolm R.E., editors. Soil Organic matter and biological activity. Dordrecht. Boston. Lanchester: Martinus Nijoff. / Dr. W. Junk.; 1985. pp. 223–239. [Google Scholar]
  • 47.Doran J.W., Parkin T.B. Defining and assessing soil quality. In: Doran J.W., Coleman D.C., Bezdicek D.F., Stewart B.A., editors. Defining soil quality for sustainable environment. Special Pub. 35. Madison, WI: Social Science Society of America, Inc.; 1994. pp. 3–21. [Google Scholar]
  • 48.Anderson J.P.E. Methods to evaluate pesticide damage to the biomass of the soil microflora. Soil Biol Biochem. 1981;13:149–153. doi: 10.1016/0038-0717(81)90011-0. [DOI] [Google Scholar]
  • 49.Duah-Yentumi S., Johnson D.B. Changes in soil microflora in response to repeated applications of some pesticides. Soil Biol Biochem. 1986;18:629–635. doi: 10.1016/0038-0717(86)90086-6. [DOI] [Google Scholar]
  • 50.Wardle D.A., Parkinson D. Influence of the herbicide glyphosate on soil microbial community structure. Pl Soil. 1990;122:29–37. doi: 10.1007/BF02851907. [DOI] [Google Scholar]
  • 51.Wardle D.A., Parkinson D. Influence of the herbicides, 2, 4-D and glyphosate on soil microbial biomass and activity: A field experiment. Soil Biol Biochem. 1992;24:185–186. doi: 10.1016/0038-0717(92)90277-5. [DOI] [Google Scholar]
  • 52.Perucci P., Scarponi L. Effects of the herbicide imazethapyr on soil microbial biomass and various soil enzyme activities. Biol Fertil Soils. 1994;17:237–240. doi: 10.1007/BF00336329. [DOI] [Google Scholar]
  • 53.Rath A.K., Ramakrishnan B., Kumaraswamy S., Bharati K., Singla P., Sethunathan N. Effect of pesticides on microbial biomass of flooded soil. Chemosphere. 1998;37:661–671. doi: 10.1016/S0045-6535(98)00082-4. [DOI] [Google Scholar]
  • 54.Vischetti C., Perucci P., Scarponi L. Relationship between rimusulfuron degradation and microbial biomass content in a clay loam soil. Biol Fertil Soils. 2000;31:310–314. doi: 10.1007/s003740050661. [DOI] [Google Scholar]
  • 55.Haney R.L., Senseman S.A., Hons F.M. Effect of Roundup Ultra on microbial activity and biomass from selected soils. J Environ Qual. 2002;31:730–735. doi: 10.2134/jeq2002.7300. [DOI] [PubMed] [Google Scholar]
  • 56.Pal R., Chakrabarti K., Chakraborty A., Chowdhury A. Degradation of pencycuron in soil: effect of application rate and soil conditions. Pest Manag Sci. 2005;61:1220–1223. doi: 10.1002/ps.1114. [DOI] [PubMed] [Google Scholar]
  • 57.Gray T.R.G. Methods for studying the microbial ecology of soil. In: Grigorova R., Norris J. R., editors. Methods in microbiology. London: Academic Press; 1990. pp. 309–342. [Google Scholar]
  • 58.Anderson J.P.E., Domsch K.H. A physiological method for the quantitative measurement of microbial biomass in soils. Soils Biol Biochem. 1978;10:215–221. doi: 10.1016/0038-0717(78)90099-8. [DOI] [Google Scholar]
  • 59.Cheng W., Zhang Q., Coleman D.C., Caroll C.R., Hoffman C.A. Is available carbon limiting microbial respiration in the rhizosphere? Soil Biol Biochem. 1996;28:1283–1288. doi: 10.1016/S0038-0717(96)00138-1. [DOI] [Google Scholar]
  • 60.Pankhurst C.E., Hawke B.A., McDonald H.J., Kirby C.A., Buckerfield J.C., Michelsen P., Ú Brien K.A., Gupta V.V.S.R., Doube B.M. Evaluation of soil biological properties as potential bioindicators of soil health. Aust J Exp Agr. 1995;35:1015–1028. doi: 10.1071/EA9951015. [DOI] [Google Scholar]
  • 61.Alef K. Estimation of soils respiration. In: Alef K., Nannipieri P., editors. Methods in applied soil microbiology and biochemistry. London: Academic Press.; 1995. pp. 215–216. [Google Scholar]
  • 62.Zelles L., Scheunert I., Korte F. Side effects of some pesticides on non-target soil microorganisms. J Environ Sci Health. 1985;20:457–488. [Google Scholar]
  • 63.Wardle D.A., Parkinson D. Effects of three herbicides on soil microbial biomass and activity. Pl Soil. 1990;122:21–28. doi: 10.1007/BF02851906. [DOI] [Google Scholar]
  • 64.Tu C.M. Effect of some herbicides on activities of microorganisms and enzymes in soil. J Environ Sci Health. 1992;27:695–709. [Google Scholar]
  • 65.Haney R.L., Senseman S.A. Effect of glyphosate on soil microbial activity and biomass. Weed Sci. 2000;48:89–93. doi: 10.1614/0043-1745(2000)048[0089:EOGOSM]2.0.CO;2. [DOI] [Google Scholar]
  • 66.Powlson D.S., Brookes P.C., Christensen B.T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol Biochem. 1987;19:159–164. doi: 10.1016/0038-0717(87)90076-9. [DOI] [Google Scholar]
  • 67.Wardle D.A. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biol Rev. 1992;67:321–358. doi: 10.1111/j.1469-185X.1992.tb00728.x. [DOI] [Google Scholar]
  • 68.Wardle D.A., Ghani A. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol Biochem. 1995;27:1601–1610. doi: 10.1016/0038-0717(95)00093-T. [DOI] [Google Scholar]
  • 69.Anderson T.H., Domsch K.H. Application of ecophysiological quotients (qCO2 and qD) on microbial biomass from soils of different cropping histories. Soil Biol Biochem. 1990;22:251–255. doi: 10.1016/0038-0717(90)90094-G. [DOI] [Google Scholar]
  • 70.Perucci P., Dumontet S., Bufo S.A., Mazzatura A., Casucci C. Effects of organic amendments and herbicide treatment on soil microbial biomass. Biol Fertil Soils. 2000;32:17–23. doi: 10.1007/s003740000207. [DOI] [Google Scholar]
  • 71.Adam G., Duncan H. Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem. 2001;33:943–951. doi: 10.1016/S0038-0717(00)00244-3. [DOI] [Google Scholar]
  • 72.Dumontet S, Perucci P and Bufo AS (1997) Soil organic amendments and herbicidal treatments: effect on soil microbial biomass. Actes du XXVII Congres du Groupe Francais des Pesticides, Orleans, France. Pp. 211
  • 73.Perucci P., Vischetti C., Battistoni F. Rimsulfuron in a silty clay loam soil: effects upon microbiological and biochemical properties under varying microcosm conditions. Soil Biol Biochem. 1999;31:195–204. doi: 10.1016/S0038-0717(98)00087-X. [DOI] [Google Scholar]
  • 74.Alexander M. Biodegradation and bioremediation. New York: Academic Press; 1994. [Google Scholar]
  • 75.Moorman T.B., Harper S.S. Transformation and mineralization of metribuzin in surface and subsurface horizons of a Mississippi Delta soil. J Environ Qual. 1989;18:302–306. doi: 10.2134/jeq1989.00472425001800030011x. [DOI] [Google Scholar]
  • 76.Walker A., Moon Y.H., Welch S.J. Influence of temperature, soil moisture and soil characteristics on persistence of Alachlor. Pest Sci. 1992;35:109–116. doi: 10.1002/ps.2780350203. [DOI] [Google Scholar]
  • 77.Entry J.A., Donelly P.K., Emmingham W.H. Microbial mineralization of atrazine and 2, 4-dichlorophenoxyacetic acid in riparian pasture and forest soils. Biol Fertil Soils. 1994;18:89–94. doi: 10.1007/BF00336451. [DOI] [Google Scholar]
  • 78.Ghani A., Wardle D.A., Rahman A., Lauren D.R. Interactions between 14C labeled atrazine and the soil microbial biomass in relation to herbicide degradation. Biol Fertil Soils. 1996;21:17–22. doi: 10.1007/BF00335988. [DOI] [Google Scholar]
  • 79.Vischetti C., Casucci C., Perucci P. Relationship between changes of soil microbial biomass content and benfluralin degradation. Biol Fertil Soils. 2002;35:13–17. doi: 10.1007/s00374-001-0433-5. [DOI] [Google Scholar]
  • 80.Mulbry W., Kearney P.C. Degradation of pesticides by microorganisms and the potential for genetic manipulation. Crop Protection. 1991;10:334–346. doi: 10.1016/S0261-2194(06)80021-9. [DOI] [Google Scholar]
  • 81.Chaudhry M.Q., Schroeder P., Werck-Reichhart D., Grajek W., Marecik R. Prospects and limitations of phytoremediation for the removal of persistent pesticides in the environment. Environmental Science and Pollution Research. 2002;9(1):4–17. doi: 10.1007/BF02987313. [DOI] [PubMed] [Google Scholar]
  • 82.Hance R.J. The effects of nutrients on the decomposition of the herbicides atrazine and linuronincubated with soil. Pestic Sci. 1973;4:817–822. doi: 10.1002/ps.2780040608. [DOI] [Google Scholar]
  • 83.Simonich S.L., Hites R.A. Organic pollutant accumulation in vegetation. Environmental Science and Technology. 1995;29:2905–2914. doi: 10.1021/es00012a004. [DOI] [PubMed] [Google Scholar]
  • 84.Wackett L.P., Sadwosky M.J., Newman L.M., Hur H.G., Li S. Metabolism of polyhalogenated compounds by a genetically engineered bacterium. Nature. 1994;368:627–629. doi: 10.1038/368627a0. [DOI] [PubMed] [Google Scholar]
  • 85.Evans C.S., Bucke C. Bioremediation by fungi. Chemistry and Industry. 1998;4:134–137. [Google Scholar]
  • 86.Hamby D.M. Site remediation techniques supporting environmental restoration activities-a review. The Science of the Total Environment. 1996;191:203–224. doi: 10.1016/S0048-9697(96)05264-3. [DOI] [Google Scholar]
  • 87.Lejeune K.E., Wild J.R., Russell A.J. Nerve agents degraded by enzymatic foams. Nature. 1998;395:27–28. doi: 10.1038/25634. [DOI] [PubMed] [Google Scholar]
  • 88.Hatzinger P.B., Alexander M. Effect of ageing of chemicals in soil in their biodegradability and extractability. Environmental Science and Technology. 1995;29:537–545. doi: 10.1021/es00002a033. [DOI] [PubMed] [Google Scholar]
  • 89.Allard A., Neilson A.H. Bioremediation of organic waste sites: A critical review of microbiological aspects. International Biodeterioration and Biodegradation. 1997;39(4):253–285. doi: 10.1016/S0964-8305(97)00021-8. [DOI] [Google Scholar]
  • 90.Romantschuk M., Sarand I., Petänen T., Peltola R., Jonsson-Vihanne M., Koivula T., Yrjälä K., Haahtela K. Means to improve the effect of in-situ bioremediation of contaminated soil: an overview of novel approaches. Environmental Pollution. 2000;107:179–185. doi: 10.1016/S0269-7491(99)00136-0. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES