Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Mar;81(6):1864–1866. doi: 10.1073/pnas.81.6.1864

Schwann cell expression of a major myelin glycoprotein in the absence of myelin assembly.

J F Poduslo, C T Berg, P J Dyck
PMCID: PMC345022  PMID: 6584919

Abstract

Quiescent Schwann cells in the distal segment of the permanently transected nerve produced basal levels of the major myelin glycoprotein, P0, in the absence of myelin assembly. Low levels of P0 could be detected at 35 days after transection by autoradiographic analysis of radioiodinated lectin binding after protein separation by high-resolution sodium dodecyl sulfate pore gradient electrophoresis and by fluorographic analysis after electrophoresis of [3H]fucose- and [3H]mannose-labeled glycoproteins after incorporation into endoneurial slices. Immunoreactivity to P0 in the transected nerve could also be demonstrated with antisera against P0 as evaluated by direct "immune overlay" after electrophoresis. These results indicate that the requirement for continuing signals from appropriate axons to make detectable amounts of myelin-specific proteins and glycolipids is not absolute. Schwann cells, therefore, like oligodendrocytes, can synthesize myelin components in the absence of neuronal influence, although information from neuronal elements probably is required for myelin assembly by Schwann cells and for myelin compaction by oligodendrocytes.

Full text

PDF
1864

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aguayo A. J., Charron L., Bray G. M. Potential of Schwann cells from unmyelinated nerves to produce myelin: a quantitative ultrastructural and radiographic study. J Neurocytol. 1976 Oct;5(8):565–573. doi: 10.1007/BF01175570. [DOI] [PubMed] [Google Scholar]
  2. Aguayo A. J., Epps J., Charron L., Bray G. M. Multipotentiality of Schwann cells in cross-anastomosed and grafted myelinated and unmyelinated nerves: quantitative microscopy and radioautography. Brain Res. 1976 Mar 5;104(1):1–20. doi: 10.1016/0006-8993(76)90643-0. [DOI] [PubMed] [Google Scholar]
  3. Barbarese E., Pfeiffer S. E. Developmental regulation of myelin basic protein in dispersed cultures. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1953–1957. doi: 10.1073/pnas.78.3.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bhat S., Barbarese E., Pfeiffer S. E. Requirement for nonoligodendrocyte cell signals for enhanced myelinogenic gene expression in long-term cultures of purified rat oligodendrocytes. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1283–1287. doi: 10.1073/pnas.78.2.1283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradel E. J., Prince F. P. Cultured neonatal rat oligodendrocytes elaborate myelin membrane in the absence of neurons. J Neurosci Res. 1983;9(4):381–392. doi: 10.1002/jnr.490090404. [DOI] [PubMed] [Google Scholar]
  6. Brockes J. P., Fryxell K. J., Lemke G. E. Studies on cultured Schwann cells: the induction of myelin synthesis, and the control of their proliferation by a new growth factor. J Exp Biol. 1981 Dec;95:215–230. doi: 10.1242/jeb.95.1.215. [DOI] [PubMed] [Google Scholar]
  7. Brockes J. P., Raff M. C., Nishiguchi D. J., Winter J. Studies on cultured rat Schwann cells. III. Assays for peripheral myelin proteins. J Neurocytol. 1980 Feb;9(1):67–77. doi: 10.1007/BF01205227. [DOI] [PubMed] [Google Scholar]
  8. Cammer W., Sirota S. R., Norton W. T. The effect of reducing agents on the apparent molecular weight of the myelin P0 protein and the possible identity of the P0 and "Y" proteins. J Neurochem. 1980 Feb;34(2):404–409. doi: 10.1111/j.1471-4159.1980.tb06610.x. [DOI] [PubMed] [Google Scholar]
  9. Dyck P. J., Ellefson R. D., Lais A. C., Smith R. C., Taylor W. F., Van Dyke R. A. Histologic and lipid studies of sural nerves in inherited hypertrophic neuropathy: preliminary report of a lipid abnormality in nerve and liver in Dejerine-Sottas disease. Mayo Clin Proc. 1970 Apr;45(4):286–327. [PubMed] [Google Scholar]
  10. Fryxell K. J., Balzer D. R., Jr, Brockes J. P. Development and applications of a solid-phase radioimmunoassay for the PO protein of peripheral myelin. J Neurochem. 1983 Feb;40(2):538–546. doi: 10.1111/j.1471-4159.1983.tb11316.x. [DOI] [PubMed] [Google Scholar]
  11. Fryxell K. J. Synthesis of sulfatide by cultured rat Schwann cells. J Neurochem. 1980 Dec;35(6):1461–1464. doi: 10.1111/j.1471-4159.1980.tb09026.x. [DOI] [PubMed] [Google Scholar]
  12. Gibson R., Kornfeld S., Schlesinger S. The effect of oligosaccharide chains of different sizes on the maturation and physical properties of the G protein of vesicular stomatitis virus. J Biol Chem. 1981 Jan 10;256(1):456–462. [PubMed] [Google Scholar]
  13. Hirayama M., Silberberg D. H., Lisak R. P., Pleasure D. Long-term culture of oligodendrocytes isolated from rat corpus callosum by Percoll density gradient. Lysis by polyclonal antigalactocerebroside serum. J Neuropathol Exp Neurol. 1983 Jan;42(1):16–28. doi: 10.1097/00005072-198301000-00002. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lisak R. P., Abramsky O., Dorfman S. H., George J., Manning M. C., Pleasure D. E., Saida T., Silberberg D. H. Antibodies to galactocerebroside bind to oligodendroglia in suspension culture. J Neurol Sci. 1979 Jan;40(1):65–73. doi: 10.1016/0022-510x(79)90009-1. [DOI] [PubMed] [Google Scholar]
  16. McCarthy K. D., Partlow L. M. Neuronal stimulation of (3H)thymidine incorporation by primary cultures of highly purified non-neuronal cells. Brain Res. 1976 Sep 24;114(3):415–426. doi: 10.1016/0006-8993(76)90963-x. [DOI] [PubMed] [Google Scholar]
  17. Mirsky R., Winter J., Abney E. R., Pruss R. M., Gavrilovic J., Raff M. C. Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture. J Cell Biol. 1980 Mar;84(3):483–494. doi: 10.1083/jcb.84.3.483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Poduslo J. F. Developmental regulation of the carbohydrate composition of glycoproteins associated with central nervous system myelin. J Neurochem. 1981 Jun;36(6):1924–1931. doi: 10.1111/j.1471-4159.1981.tb10816.x. [DOI] [PubMed] [Google Scholar]
  19. Poduslo J. F. Glycoprotein molecular-weight estimation using sodium dodecyl sulfate-pore gradient electrophoresis: comparison of tris-glycine and tris-borate-EDTA buffer systems. Anal Biochem. 1981 Jun;114(1):131–139. doi: 10.1016/0003-2697(81)90463-2. [DOI] [PubMed] [Google Scholar]
  20. Poduslo J. F., Harman J. L., McFarlin D. E. Lectin receptors in central nervous system myelin. J Neurochem. 1980 Jun;34(6):1733–1744. doi: 10.1111/j.1471-4159.1980.tb11268.x. [DOI] [PubMed] [Google Scholar]
  21. Poduslo J. F. Regulation of myelination: biosynthesis of the major myelin glycoprotein by Schwann cells in the presence and absence of myelin assembly. J Neurochem. 1984 Feb;42(2):493–503. doi: 10.1111/j.1471-4159.1984.tb02705.x. [DOI] [PubMed] [Google Scholar]
  22. Poduslo J. F., Rodbard D. Molecular weight estimation using sodium dodecyl sulfate--pore gradient electrophoresis. Anal Biochem. 1980 Jan 15;101(2):394–406. doi: 10.1016/0003-2697(80)90205-5. [DOI] [PubMed] [Google Scholar]
  23. Poduslo S. E., Miller K., McKhann G. M. Metabolic properties of maintained oligodendroglia purified from brain. J Biol Chem. 1978 Mar 10;253(5):1592–1597. [PubMed] [Google Scholar]
  24. Poduslo S. E., Miller K., Wolinsky J. S. The production of a membrane by purified oligodendroglia maintained in culture. Exp Cell Res. 1982 Jan;137(1):203–215. doi: 10.1016/0014-4827(82)90021-0. [DOI] [PubMed] [Google Scholar]
  25. Poduslo S. E., Miller K., Zoller S. Purification and maintenance in culture of oligodendroglia from human multiple sclerosis brain. J Neurol Sci. 1982 Jun;54(3):395–400. doi: 10.1016/0022-510x(82)90202-7. [DOI] [PubMed] [Google Scholar]
  26. Politis M. J., Sternberger N., Ederle K., Spencer P. S. Studies on the control of myelinogenesis. IV. Neuronal induction of Schwann cell myelin-specific protein synthesis during nerve fiber regeneration. J Neurosci. 1982 Sep;2(9):1252–1266. doi: 10.1523/JNEUROSCI.02-09-01252.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Raff M. C., Fields K. L., Hakomori S. I., Mirsky R., Pruss R. M., Winter J. Cell-type-specific markers for distinguishing and studying neurons and the major classes of glial cells in culture. Brain Res. 1979 Oct 5;174(2):283–308. doi: 10.1016/0006-8993(79)90851-5. [DOI] [PubMed] [Google Scholar]
  28. Raff M. C., Mirsky R., Fields K. L., Lisak R. P., Dorfman S. H., Silberberg D. H., Gregson N. A., Leibowitz S., Kennedy M. C. Galactocerebroside is a specific cell-surface antigenic marker for oligodendrocytes in culture. Nature. 1978 Aug 24;274(5673):813–816. [PubMed] [Google Scholar]
  29. Spencer P. S., Weinberg H. J., Krygier-Brévart V., Zabrenetzky V. Anin vivo method to prepare normal Schwann cells free of axons and myelin. Brain Res. 1979 Apr 6;165(1):119–126. doi: 10.1016/0006-8993(79)90049-0. [DOI] [PubMed] [Google Scholar]
  30. Szuchet S., Stefansson K., Wollmann R. L., Dawson G., Arnason B. G. Maintenance of isolated oligodendrocytes in long-term culture. Brain Res. 1980 Oct 27;200(1):151–164. doi: 10.1016/0006-8993(80)91101-4. [DOI] [PubMed] [Google Scholar]
  31. Weinberg H. J., Spencer P. S. Studies on the control of myelinogenesis. I. Myelination of regenerating axons after entry into a foreign unmyelinated nerve. J Neurocytol. 1975 Aug;4(4):395–418. doi: 10.1007/BF01261372. [DOI] [PubMed] [Google Scholar]
  32. Weinberg H. J., Spencer P. S. Studies on the control of myelinogenesis. II. Evidence for neuronal regulation of myelin production. Brain Res. 1976 Aug 27;113(2):363–378. doi: 10.1016/0006-8993(76)90947-1. [DOI] [PubMed] [Google Scholar]
  33. Wood P. M., Bunge R. P. Evidence that sensory axons are mitogenic for Schwann cells. Nature. 1975 Aug 21;256(5519):662–664. doi: 10.1038/256662a0. [DOI] [PubMed] [Google Scholar]
  34. Wray W., Boulikas T., Wray V. P., Hancock R. Silver staining of proteins in polyacrylamide gels. Anal Biochem. 1981 Nov 15;118(1):197–203. doi: 10.1016/0003-2697(81)90179-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES