Abstract
The nitrile hydratase (NHase, EC 3.5.5.1) activity of Rhodococcus rhodochrous PA-34 was explored for the conversion of 3-cyanopyridine to nicotinamide. The NHase activity (∼18 U/mg dry cell weight, dcw) was observed in 0.1 M phosphate buffer, pH 8.0 containing 1M 3-cyanopyridine as substrate, and 0.75 mg of resting cells (dry cell weight) per ml reaction mixture at 40°C. However, 25°C was more suitable for prolonged batch reaction at high substrate (3-cyanopyridine) concentration. In a batch reaction (1 liter), 7M 3-cyanopyridine (729 g) was completely converted to nicotinamide (855 g) in 12h at 25°C using 9.0 g resting cells (dry cell weight) of R. rhodochrous PA-34.
Key words: Rhodococcus rhodochrous PA-34, bioconversion, nitrile hydratase (NHase), 3-cyanopyridine, nicotinamide
Full Text
The Full Text of this article is available as a PDF (354.3 KB).
References
- 1.Bettelheim FA & March J (1990) Bioenergetics, How the body converts food to energy. In: Introduction to Organic and Biochemistry Sunder College Publishing, Tokyo, pp 332–333
- 2.Shimizu S. Vitamins and related compounds: Microbial production. Weinheim, Germany: Biotechnology Wiley-VCH; 2000. pp. 319–340. [Google Scholar]
- 3.Finar I. L. Organic Chemistry: Stereochemistry and the chemistry of natural products. Singapore: Longman Singapore Publisher Pte Ltd; 1997. Alkaloids; pp. 829–860. [Google Scholar]
- 4.Furniss B.S., Hannaford A.J., Smith P.W.G., Tatchell A.R. Vogel’s textbook of practical organic chemistry. Singapore: Longman Singapore Publisher Pte Ltd; 1996. pp. 1080–1083. [Google Scholar]
- 5.Nagasawa T., Methew C.D., Mauger J., Yamada H. Nitrile hydratase-catalysed production of nicotinamide from 3-cyanopyridine in Rhodococcus rhodochrous J1. Appl Environ Microbiol. 1988;54:1766–1769. doi: 10.1128/aem.54.7.1766-1769.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Prasad S., Raj J., Bhalla T.C. Optimisation of culture conditions for hyper production of Nitrile hydratase by Rhodococcus rhodochrous PA-34. Indian J Microbiol. 2004;44:251–256. [Google Scholar]
- 7.Sankhian U.D., Kumar H., Chand D., Kumar D., Bhalla T.C. Nitrile hydratase of Rhodococcus rhodochrous NHB-2: Optimization of conditions for production of enzyme and conversion of acrylonitrile to acrylamide. Asian J Microbiol Biotechnol Environ Sci. 2003;5:79–85. [Google Scholar]
- 8.Nagasawa T., Takeuchi K., Nardidei V., Mihara Y., Yamada H. Optimum culture conditions for the production of cobalt-containing nitrile hydratase by Rhodococcus rhodochrous J1. Appl Microbiol Biotechnol. 1991;34:783–788. doi: 10.1007/BF00169350. [DOI] [Google Scholar]
- 9.Ramakrishna C., Desai J. D. Bioconversion of acrylonitrile to acrylamide by Arthrobacter sp. IPCB-3. Indian J Exp Biol. 1993;31:173–177. [Google Scholar]
- 10.Watanabe I., Satoh Y., Enomoto K., Seki S., Sakashita K. Optimal conditions for cultivation of Rhodococcus sp. N-774. Agric Biol Chem. 1987;51:3201–3206. [Google Scholar]
- 11.Yamada H., Ryuno K., Nagasawa T., Enomoto K., Watanabe I. Optimum culture conditions for production by Pseudomonas chloraraphis B 23 of nitrile hydratase. Agric Biol Chem. 1986;50:2859–2865. [Google Scholar]
- 12.Bollag D M & Edelstein S J (1991) Preparation of protein isolation In: Protein methods A John Wiley & Sons, New York, pp 1–24
- 13.Raj J., Prasad S., Bhalla T. C. Rhodococcus rhodochrous PA-34: A potential biocatalyst for acrylamide synthesis. Process Biochem. 2006;41:1359–1363. doi: 10.1016/j.procbio.2006.01.022. [DOI] [Google Scholar]
- 14.Raj J., Seth S., Prasad S., Bhalla T.C. Bioconversion of butyronitrile to butyramide using whole cells of Rhodococcus rhodochrous PA-34. Appl Microbiol Biotechnol. 2007;74:535–539. doi: 10.1007/s00253-006-0693-y. [DOI] [PubMed] [Google Scholar]