Abstract
Seventy isolates of Bacillus thuringiensis were isolated from soil samples collected from cotton fields. These isolates were characterized by randomly amplified poylmorphic DNA (RAPD) markers to determine their genetic diversity pattern based on their source of origin. Different random decamer primers were used for RAPD amplification, which generated a total of 1935 fragments; of these 1865 were polymorphic and 68 monomorphic. The primers OPA03, OPA08, OPD14, OPD19, OPD20, OPE17 and OPD19 produced 100% polymorphic fragments, whereas primers OPC06, OPC20 and OPD17 produced 20, 31 and 17 monomorphic fragments, respectively. When the RAPD banding pattern data was subjected to dendrogram construction, the 70 isolates fell into two separate clusters, cluster I and cluster II, which includes 26 and 44 B. thuringiensis isolates, respectively. These two main clusters were further divided into four subclusters at Eucledian distance of 150 and 80% similarity index. All primers showed amplification and indicated the good diversity of B. thuringiensis isolates. The RAPD pattern showed 4–10 bands per isolate, with MWt in the range of 0.4–3.5 Kb and an average of 193.5 fragments were produced per primer. The primer OPE17 was found to be the most discriminatory as it produced 286 polymorphic bands.
Keywords: Bacillus thuringiensis, RAPD analysis, Genetic diversity, Dendrogram
Full Text
The Full Text of this article is available as a PDF (249.1 KB).
References
- 1.Hofte H., Whiteley H.R. Insecticidal crystal proteins of Bacillus thuringiensis. Micorbiol Rev. 1989;53:242–255. doi: 10.1128/mr.53.2.242-255.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Charles J.F., Nielson-LeRoux C., Deecluse A Bacillus sphericus toxins: Molecular biology and mode of action. Annul Rev Entomol. 1996;41:389–410. doi: 10.1146/annurev.en.41.010196.002315. [DOI] [PubMed] [Google Scholar]
- 3.Martin P., Travers R. Worldwide abundance and distribution of Bacillus thuringiensis isolates. Appl Environ Microbiol. 1989;55:2437–2442. doi: 10.1128/aem.55.10.2437-2442.1989. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Iriarte J., Bel Y., Ferrandis M.D., Andrew R., Murillo J., Ferre J., Caballero P. Environmental distribution and diversity of Bacillus thuringiensis in Spain. Sys Appl Microbiol. 1998;21:97–106. doi: 10.1016/S0723-2020(98)80012-X. [DOI] [PubMed] [Google Scholar]
- 5.Caetano-Anolles G., Bassam B.J., Gresshoff P.M. DNA amplification fingerprinting using very short arbitrary oligonucleotige primers. Biotechnology. 1991;9:553–557. doi: 10.1038/nbt0691-553. [DOI] [PubMed] [Google Scholar]
- 6.Bruijn Use of repetitive (repetitive extragenic palandromic and enterobacterial repetitive intergeneric consensus) sequences and the polymerase chain reaction to fingerprint the genomes of Rhizobium meliloti isolates and other soil bacteria. Applied Env Microbiol. 1992;58:2180–2187. doi: 10.1128/aem.58.7.2180-2187.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Sikora S., Redzepovic S., Pejic I., Kozumplik V. Genetic diversity of Bradyrhizobium japonicum field population revealed by RAPD fingerprinting. J Applied Microbiol. 1997;82:527–531. doi: 10.1046/j.1365-2672.1997.00140.x. [DOI] [Google Scholar]
- 8.Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucl Acids Res. 1990;18:7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Williams J.G.K., Kubelik A. R., Livak K.J., Rafalski J.A., Tingey S.V. DNA polymorphisms amplified by aribitary primers are useful as genetics markers. Nucleic Acids Res. 1990;18:6531–6535. doi: 10.1093/nar/18.22.6531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Brousseau R., Saint-Onge A., Prefontaine G., Masson L., Cabane J. Arbitrary primer polymerase chain reaction, a powerful method to identify Bacillus thuringiensis serovars and strains. Appl Environ Micorbiol. 1993;59:114–119. doi: 10.1128/aem.59.1.114-119.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Hansen B.M., Damgaard P.H., Eilenberg J., Pedersen J.C. Molecular and phenotypic characterization of Bacillus thuringiensis isolates from leaves and insects. J Invertebr Pathol. 1998;71:106–114. doi: 10.1006/jipa.1997.4712. [DOI] [PubMed] [Google Scholar]
- 12.Travers R.S., Martin P.A., Reichelderfer C.F. Selective process for efficient isolation of soil Bacillus sp. Appl Environ Micorbiol. 1987;53:1263–1266. doi: 10.1128/aem.53.6.1263-1266.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Ohba M., Aizawa K. Insect toxicity of Bacillus thuringiensis isolated from soils of Japan. J Inverte Pathol. 1986;47:12–20. doi: 10.1016/0022-2011(86)90158-8. [DOI] [Google Scholar]
- 14.Welsh J., McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Res. 1990;18:7213–7218. doi: 10.1093/nar/18.24.7213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Yaradoni S.N., Krishnaraj P.U., Ussuf K.K., Kuruvinashetti M.S. Molecular characterization of isolates of Bacillus thuringiensis from Western Ghats. J Plant Biol. 2003;30:7–13. [Google Scholar]
- 16.Gaviera-Rivera A.M., Priest F.G. Molecular typing of Bacillus thuringiensis serovars by RAPD-PCR. Syst Appl Micobiol. 2003;26:254–261. doi: 10.1078/072320203322346100. [DOI] [PubMed] [Google Scholar]
- 17.Malkawi H.I., Al-Momani F., Meqdam M.M., Saadoun I., Mohammad M.J. Detection of genetic polymorphisms by RAPD-PCR among isolates of Bacillus thuringiensis. New Microbiol. 1999;22:241–247. [PubMed] [Google Scholar]
- 18.Pattanayak D., Chakrabarty S.K., Kumar P.A., Naik P.S. Characterization of genetic diversity of some serovars of Bacillus thuringiensis by RAPD. Indian J Exp Biology. 2001;39(9):897–901. [PubMed] [Google Scholar]
- 19.Bostock A., Khattak M.N., Mathews R., Burnie J. Comparison of PCR fingerprinting, by random amplification of polymorphic DNA with other molecular typing methods for Candida albicans. J General Microbiol. 1993;139:2179–2184. doi: 10.1099/00221287-139-9-2179. [DOI] [PubMed] [Google Scholar]