Abstract
1,2-Propanediol (propylene glycol) is an existing commodity chemical and can be produced from renewable resources using microbes. By virtue of being a natural product, relevant biochemical pathways can be harnessed into fermentation processes to produce 1,2-propanediol. In the present review, the chemical process and different biological strategies for the production of 1,2-propanediol are reviewed and compared with the potentials and limitations of all processes. For the successful commercial production of this diol, it is necessary to establish the metabolic pathways and production hosts (microorganisms), which are capable of delivering final product with high yields and volumetric productivity. Three pathways which have been recognized for 1,2-propanediol production are discussed here. In the first, de-oxy sugars like fucose and rhamnose are used as the carbon sources, while in the other route, the glycolytic intermediate-dihydroxyacetonephosphate (DHAP) is used to produce 1,2-propanediol via the formation of methylglyoxal. A new pathway of 1,2-propanediol production by lactic acid degradation under anoxic conditions and the enzymes involved is also discussed. The production of this diol has gained attention because of their newer applications in industries such as polymers, food, pharmaceuticals, textiles, etc. Furthermore, improvement in fermentation technology will permit its uses in other applications. Future prospect in the light of the current research and its potential as a major bulk chemical are discussed.
Keywords: 1,2-Propanediol; Anaerobic fermentation; Renewable resources; De-oxy sugars; Application
Full Text
The Full Text of this article is available as a PDF (333.0 KB).
References
- 1.Behr A., Eilting J., Irawadi K., Leschinski J., Lindner F. Improved utilization of renewable resources: New important derivatives of glycerol. Green Chemistry. 2008;10:13–30. doi: 10.1039/b710561d. [DOI] [Google Scholar]
- 2.Ragauskas A.J., Williams C.K., Davison B.H., Britovsek G., Cairney J., Eckert C.A., Frederick W.J., Hallett J.P., Leak D.J., Liotta C.L., Mielenz J.R., Murphy R., Templer R., Tschaplinski T. The path forward for biofuels and biomaterial. Science. 2006;311:484–489. doi: 10.1126/science.1114736. [DOI] [PubMed] [Google Scholar]
- 3.Hartlep M., Hussman W., Prayitno N., Meynial-Salles I., Zeng A.P. Study of two-stage processes for the microbial production of 1,3-propanediol from glycerol. Appl Microbiol Biotechnol. 2002;60:60–66. doi: 10.1007/s00253-002-1111-8. [DOI] [PubMed] [Google Scholar]
- 4.Chotani G., Dogde T., Hsu A., Kumar M., La Duca R., Trimbur D., Weler W., Sanford K. The commercial production of chemicals using pathway engineering. Biochim Biophys Acta. 2000;1543:434–455. doi: 10.1016/s0167-4838(00)00234-x. [DOI] [PubMed] [Google Scholar]
- 5.Cameron D.C., Altaras N.E., Hoffman M.L., Shaw A.J. Metabolic engineering of propanediol pathway. Biotechnol Prog. 1998;14:116–125. doi: 10.1021/bp9701325. [DOI] [PubMed] [Google Scholar]
- 6.Bennett G.N., San K.Y. Microbial formation, biotechnological production and applications of 1,2-propanediol. Appl Microbiol Biotechnol. 2001;55:1–9. doi: 10.1007/s002530000476. [DOI] [PubMed] [Google Scholar]
- 7.Altaras N.E., Cameron D.C. Metabolic engineering of a 1,2-propanediol pathway in E. coli. Appl Environ Microbiol. 1999;65:1180–1185. doi: 10.1128/aem.65.3.1180-1185.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Lenth C.W., Puis R. Polyhydric alcohol production by hydrogenolysis of sugars in the presence of copper-aluminium oxide. Ind Eng Chem Res. 1945;37:152–157. doi: 10.1021/ie50422a011. [DOI] [Google Scholar]
- 9.Martin A.E., Murphy F.H. Propylene glycols. In: Kroschwitz J.I., editor. Kirk-Othmer Encyclopedia of Chemical Technology. 4th edition. New York: Wiley; 1994. pp. 715–726. [Google Scholar]
- 10.Fryzuk M.D., Bosnich B. Asymmetrical synthesis: An asymmetric homogenous hydrogenation catalyst which breeds its own chirality. J Am Chem Soc. 1978;100:5491–5494. doi: 10.1021/ja00485a037. [DOI] [Google Scholar]
- 11.Kometani T., Yoshii G., Takeuchi Y., Matsuno T. Preparation of chiral 1,2-alkanediols with baker’s yeast-mediated oxidation. Chem Lett. 1993;12:2123–2124. doi: 10.1246/cl.1993.2123. [DOI] [Google Scholar]
- 12.Dasari M.A., Kiatsimkul P.P., Sutterlin W.R., Suppes G.J. Low pressure hydrogenolysis of glycerol to propylene glycol. Appl Catal A-Gen. 2005;281:225–231. doi: 10.1016/j.apcata.2004.11.033. [DOI] [Google Scholar]
- 13.Braca G., Raspolli Galletti A.M., Sbrana G. Anionic ruthenium iodocarbonyl complexes as selective dehydroxylation catalysts in aqueous solution. J Organomet Chem. 1991;417:41–49. doi: 10.1016/0022-328X(91)80159-H. [DOI] [Google Scholar]
- 14.Herrera S. Industrial biotechnology - a chance at redemption. Nat Biotechnol. 2004;22(6):671–678. doi: 10.1038/nbt0604-671. [DOI] [PubMed] [Google Scholar]
- 15.Suzuki T., Onishi H. Aerobic dissimilation of α-Rhamnose and the production of α-Rhamnoic acid and 1,2-propanediol by yeast. Agr Biol Chem. 1968;32:888–893. [Google Scholar]
- 16.Badia J., Ros J., Aguilar J. Fermentation mechanism of fucose and rhamnose in Salmonella typhium and Klebsiella pneumoniae. J Bacteriol. 1985;161:435–437. doi: 10.1128/jb.161.1.435-437.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Enebo L. Studies in cellulose decomposition by an anaerobic thermophilic bacterium and two associated non-cellulolytic species. Stockholm: Viktor Pettersons Bokindustrie Akuebolag.; 1954. [Google Scholar]
- 18.Turner K.W., Roberton A.M. Xylose, arabinose, and rhamnose fermentation by Bacteriodes ruminicola. Appl Environ Microbiol. 1979;38(1):7–12. doi: 10.1128/aem.38.1.7-12.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19.Boronat A., Aguilar J. Metabolism of L-fucose and L-rhamnose in Escherichia coli: differences in induction of propanediol oxidoreductase. J Bacteriol. 1981;147:181–185. doi: 10.1128/jb.147.1.181-185.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Tran-Din K., Gottaschalk G. Formation of D(-)-1,2- propanediol and D(-)-lactate from glucose by Clostridium sphenoides under phosphate limitation. Arch Microbiol. 1985;142:87–92. doi: 10.1007/BF00409243. [DOI] [Google Scholar]
- 21.Cameron D.C., Cooney C.L. A novel fermentation: The production of (R)-1,2-propanediol and acetol by Clostridium thermosaccharolyticum. Biores Technol. 1986;4:651–654. [Google Scholar]
- 22.Sanchez Rivera F., Cameron D.C., Cooney C.L. Influence of environmental factors in the production of 1,2-propanediol by Clostridium thermosaccharolyticum. Biotechnol Lett. 1987;9:449–454. doi: 10.1007/BF01027450. [DOI] [Google Scholar]
- 23.Altaras N.E., Etzel M.R., Cameron D.C. Conversion of sugar to 1,2-propanediol by Thermoanaerobacterium thermosaccharolyticum HG-8. Biotechnol Prog. 2001;17:52–56. doi: 10.1021/bp000130b. [DOI] [PubMed] [Google Scholar]
- 24.Dowd M.K., Johnsen S.L., Cantarella L., Reilly P.J. Low molecular weight organic composition of ethanol silages from sugarcane molasses, citrus waste and sweet whey. J Agric Food Chem. 1994;42:283–288. doi: 10.1021/jf00038a011. [DOI] [Google Scholar]
- 25.Hoffman M.L. Ph.D thesis. Madison: University of Wisconsin -; 1999. Metabolic engineering of 1,2-propanediol product in Saccharomyces cerevisiae. [Google Scholar]
- 26.Obradors N., Badia J., Baldoma L., Aguilar J. Anaerobic metabolism of the L-Rhamnose fermentation product 1,2-propanediol in Salmonella typhimurium. J Bacteriol. 1988;170(5):2159–2162. doi: 10.1128/jb.170.5.2159-2162.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Veiga da Cunha M., Foster M.A. Sugar-glycerol co fermentations in Lactobacilli: The fate of lactate. J Bacteriol. 1992;174:1013–1019. doi: 10.1128/jb.174.3.1013-1019.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Elferink S.J.W.H.O., Krooneman J., Gottschal J.C., Spoelstra S.F., Faber F., Driehuis F. Anaerobic conversion of lactic acid to acetic acid and 1,2-propanediol by Lactobacillus buchneri. Appl Environ Microbiol. 2001;67(1):125–132. doi: 10.1128/AEM.67.1.125-132.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Boronat A., Aguilar J. Rhamnose-induced propanediol oxidoreductase in Escherichia coli: purification, properties and comparison with the fucose-induced enzyme. J Bacteriol. 1979;140:320–326. doi: 10.1128/jb.140.2.320-326.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Lin E.C.C. Conversion of reductases to dehydrogenase by regulatory mutations. In: Hollaender A., editor. Trends in the Biology of Fermentation for Fuels and Chemicals. New York, London: Plenum Press; 1980. pp. 305–313. [Google Scholar]
- 31.Weimer P.J. Fermentation of 6-deoxyhexoses by Bacillus maceran. Ann Meet Am Soc Microbiol. 1983;10:241. doi: 10.1128/aem.47.2.263-267.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Cooper R.A. The separation of 2,4-dinitrophenylhydrazones by thin layer chromatography. J Chromatogr. 1975;20:528–540. doi: 10.1016/s0021-9673(01)97455-2. [DOI] [PubMed] [Google Scholar]
- 33.DeLey J., Kersters K. Oxidation of aliphatic glycols by acetic acid bacteria. Bacteriol Rev. 1964;28:164–180. [PMC free article] [PubMed] [Google Scholar]
- 34.Tanaka Y., Fujii K., Tanaka A., Fukui S. Metabolism of 1,2-propanediol in a soil bacterium. J Ferment Technol. 1975;53:354–362. [Google Scholar]
- 35.Murata K., Fukuda Y., Watanabe K., Saikusa T., Shimosaka M., Kimura A. Charaterization of methyglyoxal synthase in Sacchromyces cerevisiae. Biochem Biophys Res Commun. 1985;131(1):190–198. doi: 10.1016/0006-291X(85)91788-7. [DOI] [PubMed] [Google Scholar]
- 36.Nakamura K., Kondo S., Kawai Y., Nakajima N., Ohno A. Amino acid sequence and characterization of aido-keto reductase from bakers’ yeast. Biosci Biotechnol Biochem. 1997;61:375–377. doi: 10.1271/bbb.61.375. [DOI] [PubMed] [Google Scholar]
- 37.Simon E.S., Whitesides M., Cameron D.C., Weitz D.J., Cooney C.L. A combined microbial/chemical synthesis of (+)-(R)-methyloxirane having high enantiomeric excess. J Org Chem. 1987;52:4042–4044. doi: 10.1021/jo00227a018. [DOI] [Google Scholar]
- 38.Forage R., Lin E.C.C. dha system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB418. J Bacteriol. 1982;151:591–599. doi: 10.1128/jb.151.2.591-599.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 39.Hacking A.J., Lin E.C. Disruption of the fucose pathway as a consequence of genetic adaptation of propanediol as a carbon source in E. coli. J Bacteriol. 1976;126:1166–1172. doi: 10.1128/jb.126.3.1166-1172.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Takagi Y., Sawada H. The metabolism of L-rhamnose in E. coli L-rhamnose isomerase. Biochim Biophys Acta. 1964;92:10–17. doi: 10.1016/0926-6569(64)90263-9. [DOI] [PubMed] [Google Scholar]
- 41.Heath E.C., Ghalambor M.A. The metabolism of fucose II: the purification and properties of L-fucolose kinase. J Biol Chem. 1962;237:2423–2426. [PubMed] [Google Scholar]
- 42.Ghalambor M.A., Heath E.C. The metabolism of fucose II: The enzymatic cleavage of L-fucolose-1-phosphate. J Biol Chem. 1962;237:2427–2433. [PubMed] [Google Scholar]
- 43.Hacking A.J., Lin E.C. Regulatory changes in the fucose system associated with the evolution of a catabolic pathway for propanediol in Escherichia coli. J Bacteriol. 1977;130:832–838. doi: 10.1128/jb.130.2.832-838.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Beckmann B.J., Low K.B. Linkage of E. coli K12. Microbiol Rev. 1980;44:1–36. doi: 10.1128/mr.44.1.1-56.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Huang K.X., Rudolph F.B., Bennet G.N. Characterization of methylglyoxal synthase from Clostridium acetobutylicum ATCC 824 and its use in the formation of 1,2-propanediol. Appl Environ Microbiol. 1999;65(7):3244–3247. doi: 10.1128/aem.65.7.3244-3247.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 46.Hopper D.J., Cooper R.A. The purification and properties of Escherichia coli methyglyoxal synthase. Biochem J. 1972;128:321–329. doi: 10.1042/bj1280321. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Tsai P.K., Gracy R.W. Isolation and characterization of crystalline methylglyoxal synthase from Proteus vulgaris. J Biol Inorg Chem. 1976;251:364–367. [PubMed] [Google Scholar]
- 48.Wong C.H. Enzymes in Synthetic Organic Chemistry. London, United Kingdom: Elsevier Science Ltd.; 1994. [Google Scholar]
- 49.Yoo D.S., Lee J.W., Yun H.S. Optimization of production of 1,2-propanediol in Saccharomyces cerevisiae by using dual vector system. J Biotechnol. 2008;136S:S345–S355. [Google Scholar]
- 50.Noh Y.H., Kim S.K., Park B.J., Lee J.W., Yun H.S. Optimization of production of 1,2-propanediol from Saccharomyces cerevisiae by using dual promoter vector system. J Biotechnol. 2008;136S:S290–S344. [Google Scholar]
- 51.Su W., Chang Z., Gao K., Wei D. Enantioselective oxidation of racemic 1,2-propanediol to D-(-)-lactic acid by Gluconobacter oxydans. Tetrahedran Asymmetry. 2004;15:1275–1277. doi: 10.1016/j.tetasy.2004.03.009. [DOI] [Google Scholar]
- 52.Bauer M.C., Weiss D.J., Perman V. Hematological alterations in kitten induced by 6 and 12% dietry propylene glycol. Vet Hum Toxicol. 1992;34:127–131. [PubMed] [Google Scholar]
- 53.Mailhes J.B., Young D., London S.N. 1,2-Propanediol-induced premature centromere separation in oocytes and aneuploidy in one-cell zygote. Biol Reprod. 1997;57(1):92–98. doi: 10.1095/biolreprod57.1.92. [DOI] [PubMed] [Google Scholar]