Abstract
Metagenome represent an unlimited resource for discovery of novel genes. Here we report, sequence analysis of a salt tolerant metagenomic clone (6B4) from a pond water metagenomic library. Clone 6B4 had an insert of 2254 bp with G+C composition of 64.06%. DNA sequence from 6B4 showed homology to DNA sequences from pro-teobacteria indicating origin of 6B4 metagenomic insert from a yet uncharacterized proteobacteria. Two encoded proteins from clone 6B4 showed match with ATP-depen-dent Clp protease adaptor protein (ClpS) and phasin, while two truncated encoded proteins showed match with poly-3-hydroxybutyrate synthase and permease. Clp complex is known to play a role in stress tolerance. Expression of ClpS from metagenomic clone is proposed to be responsible for salt tolerance of the metagenomic clone 6B4.
Keywords: Metagenomic, Metagenome, Salt tolerance, ClpS
Full Text
The Full Text of this article is available as a PDF (515.5 KB).
References
- 1.Kapardar R.K., Ranjan R., Grover A., Puri M., Sharma R. Identification and characterization of genes conferring salt tolerance to Escherichia coli from pond water metagenome. Biores. Technol. 2010;101(11):3917–3924. doi: 10.1016/j.biortech.2010.01.017. [DOI] [PubMed] [Google Scholar]
- 2.Pilon-Smits E.A., Terry N., Sears T. Trehalose producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol. 1998;152:525–532. [Google Scholar]
- 3.Thomas J.C., Sepahi M., Arendall B., Bohnert H.J.Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana Plant Cell Environ 199518801–806.10.1111/j.1365-3040.1995.tb00584.x [Google Scholar]
- 4.Waditee R., Bhuiyan M.N., Rai V., Aoki K., Tanaka Y., Hibino T., Suzuki S., Takano J., Jagendorf A.T., Takabe T., Takabe T. Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci USA. 2005;102:1318–1323. doi: 10.1073/pnas.0409017102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Nakayama H., Yoshida K., Ono H., Murooka Y., Shinmyo A. Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol. 2000;122:1239–1247. doi: 10.1104/pp.122.4.1239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Sharma R., Ranjan R., Kapardar R.K., Grover A. Unculturable bacterial diversity: an untapped resource. Curr Sci. 2005;89:72–77. [Google Scholar]
- 7.Singh J., Behal A., Singla N., Joshi A., Birbian N., Singh S., Bali V., Batra N. Metagenomics: Concept, methodology, ecological inference and recent advances. Biotechnol J. 2009;4:480–494. doi: 10.1002/biot.200800201. [DOI] [PubMed] [Google Scholar]
- 8.Ranjan R., Grover A., Kapardar R.K., Sharma R. Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochem Biophys Res Commun. 2005;335:57–65. doi: 10.1016/j.bbrc.2005.07.046. [DOI] [PubMed] [Google Scholar]
- 9.York G.M., Stubbe J., Sinskey A.J. New insight into the role of the PhaP Phasin of Ralstonia eutropha in promoting synthesis of polyhydroxybutyrate. J Bacteriol. 2001;183(7):2394–2397. doi: 10.1128/JB.183.7.2394-2397.2001. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Singh M., Patel S.K.S., Kalia V.C. Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microbial Cell Factories. 2009;8:38. doi: 10.1186/1475-2859-8-38. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Wang K.H., Sauer R.T., Baker T.A. ClpS modulates but is not essential for bacterial N-end rule degradation. Genes and Dev. 2007;21:403–408. doi: 10.1101/gad.1511907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Schmidt R., Zahn R., Bukau B., Mogk A. ClpS is the recognition component for Escherichia coli substrates of the N-end rule degradation pathway. Mol Microbiol. 2009;72:506–517. doi: 10.1111/j.1365-2958.2009.06666.x. [DOI] [PubMed] [Google Scholar]
- 13.Feng H., Gierasch L.M. Molecular chaperones: Clamps for the Clps Curr Biol. 1998;8:R464–R467. doi: 10.1016/s0960-9822(98)70294-5. [DOI] [PubMed] [Google Scholar]
- 14.Lupas A.N., Koretke K.K. Bioinformatic analysis of ClpS, a protein module involved in prokaryotic and eukary-otic protein degradation. J Struct Biol. 2003;141:77–83. doi: 10.1016/s1047-8477(02)00582-8. [DOI] [PubMed] [Google Scholar]
- 15.Cho S.K., Ryu M.Y., Song C., Kwak J.M., Kim W.T. Arabidopsis PUB22 and PUB23 are homologous U-box E3 ubiquitin ligasezs that play combinatory roles in response to drought stress. Plant Cell. 2008;20:1899–1914. doi: 10.1105/tpc.108.060699. [DOI] [PMC free article] [PubMed] [Google Scholar]