Skip to main content
Indian Journal of Microbiology logoLink to Indian Journal of Microbiology
. 2007 Oct 4;47(3):241–250. doi: 10.1007/s12088-007-0045-3

Development and characterization of nickel accumulating mutants of Aspergillus nidulans

Pushplata Tripathi 1,, Sheela Srivastava 2
PMCID: PMC3450350  PMID: 23100672

Abstract

Stable mutants of Aspergillus nidulans, resistant to 1 mM Ni were developed by step-by-step repeated culturing of the fungus on the medium containing increasing concentrations of nickel chloride. Characterization of mutants could differentiate them into two categories NiR I and NiR II. Each category of mutants exhibited alterations in growth, conidial germination and melanin secretion both in Ni-free and Ni-containing media. NiR II mutants were little slow in growth with sparse mycelia and conidiation but showed high melanin secretion and higher Ni-uptake in comparison to NiR I mutant. Studies involving metabolic and translational inhibitors could prove that Ni-accumulation was biphasic. The initial energy independent surface accumulation was found to be followed by energy dependent intarcellular uptake. Increase in the concentration of the metal in the medium or the time of exposure did not proportionately increase the metal uptake by the mutants. Ni-uptake followed Michaelis-Menton saturation kinetics, which was enhanced under optimum pH of 6.5–7.5 and reduced complexity of the medium due to free availability of ions. Resistance to Ni was found to be constitutive in NiRI mutant, and could be induced in NiRII mutant.

Keywords: Aspergillus nidulans, metabolic, inhibitors, kinetics, mutants, nickel, resistance, uptake

Full Text

The Full Text of this article is available as a PDF (1.3 MB).

Contributor Information

Pushplata Tripathi, Email: ptripathi14r@rediffmail.com.

Sheela Srivastava, Email: srivastava_sheela@yahoo.com.

Refernces

  • 1.Hausinger R.P. Nickel utilization by microorganisms. Microbiol Rev. 1987;51:22–42. doi: 10.1128/mr.51.1.22-42.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Babich H., Stotzky G. Nickel toxicity to microbes: Effect of pH and implications for acid rain. Environ Res. 1982;29:335–350. doi: 10.1016/0013-9351(82)90035-4. [DOI] [PubMed] [Google Scholar]
  • 3.Puckett K.J., Nieboer E., Gorzynski M.J., Richardson D.H.S. The uptake of metal ions by lichens: A modified ion-exchange process. New Phytol. 1979;72:329. doi: 10.1111/j.1469-8137.1973.tb02040.x. [DOI] [Google Scholar]
  • 4.Norseth T., Piscator M. Nickel. In: Friberg L., Nordberg G.F., Vouk V.B., editors. Handbook on the toxicology of metals. NY: Elsevier/North-Holland Biomedical Press; 1979. [Google Scholar]
  • 5.Tomsett AB (1994) Genetics and molecular biology of metal tolerance in fungi. In: Stress Tolerance of Fungi (Jennines DH ed). Marcel Dekker INC NY, pp 69–95
  • 6.Malik A. Metal bioremediation through growing cell. Environ Int. 2004;30:261–278. doi: 10.1016/j.envint.2003.08.001. [DOI] [PubMed] [Google Scholar]
  • 7.Tobin J.M., White C., Gadd G.M. Metal accumulation by fungi: Applications in environmental biotechnology. J Industrial Microbiol. 1994;13:126–130. doi: 10.1007/BF01584110. [DOI] [Google Scholar]
  • 8.Coulibaly L., Gourene G., Agathos N.S. Utilization of fungi for biotreatment of raw waste waters. Africal Journal of Biotechnology. 2003;2:620–630. [Google Scholar]
  • 9.Saxena P., Mathur N., Bhattacharya A.K. Nickel tolerance and accumulation by filamentous fungi from sludge of metal finishing industry. Geomicorbiology Journal. 2006;23:330–340. [Google Scholar]
  • 10.Verma S., Sihna U. Inhibition of growth by amino acid analogues in Aspergillus nidulans. Beitr Biol Pflanzen. 1973;49:47–58. [Google Scholar]
  • 11.Venkateswerlu G., Stotzky G. Copper and cobalt alter the cell wall composition of Cunninghamella blakesleeana. Can J Microbiol. 1986;32:654–662. doi: 10.1139/m86-122. [DOI] [PubMed] [Google Scholar]
  • 12.Kermasha S., Pellerin F., Rovel B., Goetghebeur M., Metche M. Purification and characterization of Copper-metallothioneins from Aspergillus niger. 1993;57:1420–1423. [PubMed] [Google Scholar]
  • 13.Laemmli U.K. Clevage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  • 14.Joho M., Inouhe M., Tohoyama H., Murayama T. Nickel resistance mechanisms in yeast and other fungi. Jour Industr Microbiol Biotechnol. 1995;14:164–168. doi: 10.1007/BF01569899. [DOI] [PubMed] [Google Scholar]
  • 15.MacDiarmid C.W., Gardner R.C. Overexpression of the Saccharomyces cerevisiae magnesium transport-system confers resistance to aluminium ion. J Biol chem. 1998;273:1727–1732. doi: 10.1074/jbc.273.3.1727. [DOI] [PubMed] [Google Scholar]
  • 16.Nies D.H. Microbial heavy-metal resistance. Appl Microbiol Biotechnol. 1999;51:730–750. doi: 10.1007/s002530051457. [DOI] [PubMed] [Google Scholar]
  • 17.Gadd G.M. Heavy metal pollutants: Environmental and biotechnological aspects. Encyclopedia of Microbiology. 1992;2:351–360. [Google Scholar]
  • 18.Saxena D., Joshi N., Srivastava S. Mechanism of copper resistance in copper mine isolate Pseudomonas putida strain S4. Current microbiology. 2002;45:410–414. doi: 10.1007/s00284-002-3787-5. [DOI] [PubMed] [Google Scholar]
  • 19.Mohan P.M., Sastry K.S. Interrelationships in trace-element metabolism in metal toxicities in nickel-resistant strains of Neurospora crassa. Biochem J. 1983;212:205–210. doi: 10.1042/bj2120205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Subramanyam C., Venkateswerlu G., Rao S.L.N. Cell wall composition of Neurospora crassa under conditions of copper toxicity. Appl environ microbiol. 1983;46:585–590. doi: 10.1128/aem.46.3.585-590.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Gadd G.M.Interactions of fungi with toxic metals New Phytol 19931241–35. 10.1111/j.1469-8137.1993.tb03796.x11537718 [DOI] [Google Scholar]
  • 22.Cooley R.N., Haslock H.R., Tomsett A.B. Isolation and characterization of cadmium-resistant mutants of Aspergillus nidulans. Curr Microbiol. 1986;13:265–268. doi: 10.1007/BF01568651. [DOI] [Google Scholar]
  • 23.Phelan A., Thurman D.A., Tomsett A.B. The isolation and characterization of copper-resistant mutants of Aspergillus nidulans. Curr Microbiol. 1990;21:255–260. doi: 10.1007/BF02092165. [DOI] [Google Scholar]
  • 24.Muzzarelli RAA, Bregani F & Sigon F (1986) Chelating abilities of aminoacid glucans and sugar acid glucons derived from clutosan. In: Immobilisation of Ions by Bio-sorption (Eccles H & Hunt S eds). Ellis Horwood Chichester, pp 173–1082
  • 25.Siegel S.M., Galun M., Hifgel B.Z. Filamentous fungi as metal biosorbents: A review. Water, Air, and Soil Pollution. 1990;53:335–344. doi: 10.1007/BF00170747. [DOI] [Google Scholar]
  • 26.Germann V.A., Lerch K. Copper accumulation in the cell-wall deficient slime variant of Neurospora crassa. Biochem J. 1987;245:479–486. doi: 10.1042/bj2450479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Lin C.M., Crawford B.F., Kosman D.J. Distribution of 64Cu in Saccharomyces cerevisiae: Cellular locale and metabolism. J Gen Microbiol. 1993;139:1605–1616. doi: 10.1099/00221287-139-7-1605. [DOI] [PubMed] [Google Scholar]
  • 28.Mohan P.M., Sastry K.S. Cobalt transport in nickel resistant strains of Neurospora crassa. Curr Microbiol. 1984;10:125. doi: 10.1007/BF01576771. [DOI] [Google Scholar]
  • 29.Rama Rao V.S.K.V., Wilson C.H., Maruthi Mohan P. Zn resistance in Neurospora Crassa. Biometals. 1997;10:147–156. doi: 10.1023/A:1018339425355. [DOI] [Google Scholar]
  • 30.Gadd G.M., White C. Copper uptake by Penicillium ochro-choloron: influence of pH on toxicity and demonstration of energy-dependent copper influx using protoplasts. J Gen Microbiol. 1985;131:1875–1879. [Google Scholar]
  • 31.EL-Morsy S.M. Cunninghamella echinulata a new biosorbent of metal ions from polluted water in Egypt. Mycologia. 2004;96:1183–1189. [PubMed] [Google Scholar]
  • 32.Gadd G.M., White C. Removal of thorium from simulated acid process streams by fungal biomass: Potential for thorium desorption and reuse of biomass and desorbent. J Chem Technol Biotechnol. 1992;55:39–44. doi: 10.1002/jctb.280550107. [DOI] [Google Scholar]
  • 33.Hughes M.N., Poole R.K. Metal speciation and microbial growth-the hard (and soft) facts. J Gen Microbiol. 1991;137:725–734. [Google Scholar]
  • 34.Gadd G.M., White C. Heavy metal and radionuclide accumulation and toxicity in fungi and yeasts. In: Poole R.K., Gadd G.M., editors. Metal-Microbe Interactions. Oxford: IRL Press; 1989. pp. 19–38. [Google Scholar]
  • 35.Zucconi L., Ripa C., Alianiello F., Benedetti A., Onofri S. Lead resistance, sorption and accumulation in a Paecilomyces lilacinus strain. Biology and Fertility of Soils. 2003;37:17–22. [Google Scholar]
  • 36.Starling A.P., Ross I.S. Uptake of manganese by Penicillium notatum. Microbios. 1990;63:93–100. [PubMed] [Google Scholar]
  • 37.Ross I.S. Membrane transport processes and response to exposure to heavy metals. In: Jennings D.H., editor. Stress Tolerance of Fungi. NY: Marcel Dekker Inc; 1994. pp. 97–125. [Google Scholar]
  • 38.Gharieb M.M., Gadd G.M. The Kinetics of 75[Se]-selenite uptake by Saccharomyces cerevisiae and the vaculozation response to high concentrations. Mycological Research. 2004;108:1415–1422. doi: 10.1017/S0953756204001418. [DOI] [PubMed] [Google Scholar]
  • 39.Mago R., Srivastava S. Uptake of zinc in Pseudomonas sp. Strain UDG26. Appl Env Microbiol. 1994;60:2367–2370. doi: 10.1128/aem.60.7.2367-2370.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Mehra R.K., Winge D.R. Metal ion resistance in fungi: Molecular mechanisms and their regulated expression. J Cell Biochem. 1991;45:30–40. doi: 10.1002/jcb.240450109. [DOI] [PubMed] [Google Scholar]
  • 41.Joho M., Inouhe M., Tohoyama H., Marayama T. A possible role of histidine in a nickel resistant mechanism of Saccharomyces cerevisiae. FEMS Microbiol Lett. 1990;66:333–338. doi: 10.1111/j.1574-6968.1990.tb04022.x. [DOI] [PubMed] [Google Scholar]

Articles from Indian Journal of Microbiology are provided here courtesy of Springer

RESOURCES