Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Apr;81(8):2401–2405. doi: 10.1073/pnas.81.8.2401

Imbalance of total cellular nucleotide pools and mechanism of the colchicine-induced cell activation.

I N Chou, J Zeiger, E Rapaport
PMCID: PMC345068  PMID: 6585805

Abstract

Treatment with colchicine or vinblastine, both inhibitors of microtubule assembly, renders quiescent 3T3 cells in an "activated state" as evidenced by induction of DNA synthesis and other criteria. Microtubule disassembly caused by colchicine or vinblastine brings about a dramatic expansion of total cellular UTP pools with a concomitant diminution in total cellular ATP pools, thus resulting in a marked imbalance in total cellular nucleotide pools. Colchicine and vinblastine also stimulate total cellular RNA synthesis without enhancing uridine phosphorylation, suggesting that these drugs affect the G1 phase of the cell cycle at a point beyond the enhancement of uridine phosphorylation that usually accompanies mitogenic stimulation of quiescent mammalian cells. The markedly expanded cellular UTP pools appear to be necessary for initiation of the colchicine-stimulated DNA synthesis because decreasing cellular UTP pools by addition of D-glucosamine results in a selective inhibition of DNA synthesis in the colchicine-stimulated, but not control, cells. Furthermore, D-glucosamine exerts its inhibitory effect only when it is present in the cultures within the first 14 hr after colchicine treatment. When added at 21 hr, D-glucosamine still decreases cellular UTP pools, but it is no longer inhibitory for DNA synthesis, which commences 14-16 hr after colchicine stimulation. Taxol, an antitumor drug, prevents microtubule disassembly and also blocks such events as expansion of total cellular UTP pools and stimulation of RNA and DNA synthesis, indicating that microtubule depolymerization acts as a primary event initiating the process of cell activation induced by colchicine.

Full text

PDF
2401

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ball E. H., Singer S. J. Mitochondria are associated with microtubules and not with intermediate filaments in cultured fibroblasts. Proc Natl Acad Sci U S A. 1982 Jan;79(1):123–126. doi: 10.1073/pnas.79.1.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bekesi J. G., Winzler R. J. Inhibitory effects of D-glucosamine on the growth of Walker 256 carcinosarcoma and on protein, RNA, and DNA synthesis. Cancer Res. 1970 Dec;30(12):2905–2912. [PubMed] [Google Scholar]
  3. Bosmann H. B. Inhibition of protein, glycoprotein, ribonucleic acid and deoxyribonucleic acid synthesis by D-glucosamine and other sugars in mouse leukemic cells L5178Y and selective inhibition in SV-3T3 compared with 3T3 cells. Biochim Biophys Acta. 1971 Jun 17;240(1):74–93. doi: 10.1016/0005-2787(71)90515-6. [DOI] [PubMed] [Google Scholar]
  4. Brinkley B. R. Organization of the cytoplasm. Cold Spring Harb Symp Quant Biol. 1982;46(Pt 2):1029–1040. doi: 10.1101/sqb.1982.046.01.095. [DOI] [PubMed] [Google Scholar]
  5. Chou I. N., Cox R., Black P. H. Studies on the mechanism of Ca2+ stimulation of plasminogen activator synthesis/release by Swiss 3T3 cells. J Cell Physiol. 1979 Sep;100(3):457–465. doi: 10.1002/jcp.1041000309. [DOI] [PubMed] [Google Scholar]
  6. Chou I. N., Zeiger J., Solomon J. A., Black P. H. Stimulation of plasminogen activator expression and induction of DNA synthesis by microtubule-disruptive drugs. Biochem Biophys Res Commun. 1981 Aug 31;101(4):1266–1273. doi: 10.1016/0006-291x(81)91584-9. [DOI] [PubMed] [Google Scholar]
  7. Crossin K. L., Carney D. H. Evidence that microtubule depolymerization early in the cell cycle is sufficient to initiate DNA synthesis. Cell. 1981 Jan;23(1):61–71. doi: 10.1016/0092-8674(81)90270-1. [DOI] [PubMed] [Google Scholar]
  8. Crossin K. L., Carney D. H. Microtubule stabilization by taxol inhibits initiation of DNA synthesis by thrombin and by epidermal growth factor. Cell. 1981 Dec;27(2 Pt 1):341–350. doi: 10.1016/0092-8674(81)90417-7. [DOI] [PubMed] [Google Scholar]
  9. Darzynkiewicz Z., Traganos F., Sharpless T., Melamed M. R. Lymphocyte stimulation: a rapid multiparameter analysis. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2881–2884. doi: 10.1073/pnas.73.8.2881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Brabander M., Geuens G., Nuydens R., Willebrords R., De Mey J. Taxol induces the assembly of free microtubules in living cells and blocks the organizing capacity of the centrosomes and kinetochores. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5608–5612. doi: 10.1073/pnas.78.9.5608. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Friedkin M., Rozengurt E. The role of cytoplasmic microtubules in the regulation of the activity of peptide growth factors. Adv Enzyme Regul. 1980;19:39–59. doi: 10.1016/0065-2571(81)90008-x. [DOI] [PubMed] [Google Scholar]
  12. Friedman S. J., Kimball T., Trotter C. D., Skehan P. J. The inhibition of thymidine kinase in glial tumor cells by an amino sugar, D-glucosamine. Cancer Res. 1977 Apr;37(4):1068–1074. [PubMed] [Google Scholar]
  13. Friedman S. J., Skehan P. Membrane-active drugs potentiate the killing of tumor cells by D-glucosamine. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1172–1176. doi: 10.1073/pnas.77.2.1172. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grummt F., Paul D., Grummt I. Regulation of ATP pools, rRNA and DNA synthesis in 3T3 cells in response to serum or hypoxanthine. Eur J Biochem. 1977 Jun 1;76(1):7–12. doi: 10.1111/j.1432-1033.1977.tb11564.x. [DOI] [PubMed] [Google Scholar]
  15. Heggeness M. H., Simon M., Singer S. J. Association of mitochondria with microtubules in cultured cells. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3863–3866. doi: 10.1073/pnas.75.8.3863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnson L. V., Walsh M. L., Chen L. B. Localization of mitochondria in living cells with rhodamine 123. Proc Natl Acad Sci U S A. 1980 Feb;77(2):990–994. doi: 10.1073/pnas.77.2.990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Khym J. X., Jones M. H., Lee W. H., Regan J. D., Volkin E. On the question of compartmentalization of the nucleotide pool. J Biol Chem. 1978 Dec 25;253(24):8741–8746. [PubMed] [Google Scholar]
  18. Lazarides E. Intermediate filaments: a chemically heterogeneous, developmentally regulated class of proteins. Annu Rev Biochem. 1982;51:219–250. doi: 10.1146/annurev.bi.51.070182.001251. [DOI] [PubMed] [Google Scholar]
  19. Maness P. F., Walsh R. C., Jr Dihydrocytochalasin B disorganizes actin cytoarchitecture and inhibits initiation of DNA synthesis in 3T3 cells. Cell. 1982 Aug;30(1):253–262. doi: 10.1016/0092-8674(82)90031-9. [DOI] [PubMed] [Google Scholar]
  20. Margolis R. L. Role of GTP hydrolysis in microtubule treadmilling and assembly. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1586–1590. doi: 10.1073/pnas.78.3.1586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Otto A. M. Microtubules and the regulation of DNA synthesis in fibroblastic cells. (A minireview). Cell Biol Int Rep. 1982 Jan;6(1):1–18. doi: 10.1016/0309-1651(82)90099-6. [DOI] [PubMed] [Google Scholar]
  22. Plagemann P. G., Erbe J. Transport and metabolism of glucosamine by cultured Novikoff rat hepatoma cells and effects on nucleotide pools. Cancer Res. 1973 Mar;33(3):482–492. [PubMed] [Google Scholar]
  23. Rapaport E., Christopher C. W., Ullrey D., Kalckar H. M. Selective high metabolic lability of uridine triphosphate in response to glucosamine feeding of untransformed and polyoma virus-transformed hamster fibroblasts. J Cell Physiol. 1980 Aug;104(2):253–259. doi: 10.1002/jcp.1041040216. [DOI] [PubMed] [Google Scholar]
  24. Rapaport E., Garcia-Blanco M. A., Zamecnik P. C. Regulation of DNA replication in S phase nuclei by ATP and ADP pools. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1643–1647. doi: 10.1073/pnas.76.4.1643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rapaport E., Schroder E. W., Kabcenell A. K., Black P. H. Correlation between activation of quiescent 3T3 cells by retinoic acid and increases in uridine phosphorylation and cellular RNA synthesis. Cancer Res. 1982 Dec;42(12):4918–4920. [PubMed] [Google Scholar]
  26. Rozengurt E., Mierzejewski K., Wigglesworth N. Uridine transport and phosphorylation in mouse cells in culture: effect of growth-promoting factors, cell cycle transit and oncogenic transformation. J Cell Physiol. 1978 Nov;97(2):241–251. doi: 10.1002/jcp.1040970213. [DOI] [PubMed] [Google Scholar]
  27. Rozengurt E. Stimulation of DNA synthesis in quiescent cultured cells: exogenous agents, internal signals, and early events. Curr Top Cell Regul. 1980;17:59–88. doi: 10.1016/b978-0-12-152817-1.50007-9. [DOI] [PubMed] [Google Scholar]
  28. Schiff P. B., Horwitz S. B. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1561–1565. doi: 10.1073/pnas.77.3.1561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Schroder E. W., Chou I. N., Black P. H. Effects of retinoic acid on plasminogen activator and mitogenic responses of cultured mouse cells. Cancer Res. 1980 Sep;40(9):3089–3094. [PubMed] [Google Scholar]
  30. Smith M. L., Buchanan J. M. Nucleotide and pentose synthesis after serum-stimulation of resting 3T6 fibroblasts. J Cell Physiol. 1979 Nov;101(2):293–309. doi: 10.1002/jcp.1041010210. [DOI] [PubMed] [Google Scholar]
  31. Teng M. H., Bartholomew J. C., Bissell M. J. Synergism between anti-microtubule agents and growth stimulants in enhancement of cell cycle traverse. Nature. 1977 Aug 25;268(5622):739–741. doi: 10.1038/268739a0. [DOI] [PubMed] [Google Scholar]
  32. Weisenberg R. C., Deery W. J., Dickinson P. J. Tubulin-nucleotide interactions during the polymerization and depolymerization of microtubules. Biochemistry. 1976 Sep 21;15(19):4248–4254. doi: 10.1021/bi00664a018. [DOI] [PubMed] [Google Scholar]
  33. Yanishevsky R. M., Stein G. H. Regulation of the cell cycle in eukaryotic cells. Int Rev Cytol. 1981;69:223–259. doi: 10.1016/s0074-7696(08)62324-4. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES