Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 Apr;81(8):2548–2552. doi: 10.1073/pnas.81.8.2548

Classical conditioning of the rabbit eyelid response increases glutamate receptor binding in hippocampal synaptic membranes.

L A Mamounas, R F Thompson, G Lynch, M Baudry
PMCID: PMC345100  PMID: 6144101

Abstract

Hippocampal pyramidal neurons exhibit a rapid within-trial increase in firing frequency during classical conditioning of the rabbit eyelid response. It has been proposed that the cellular mechanisms responsible for hippocampal long-term potentiation (LTP) may also mediate this learning-dependent increase in neuronal activity. The induction of LTP in rat hippocampal slices results in an increase in the number of [3H]glutamate-binding sites in the potentiated region. The present study investigates the kinetics of [3H]glutamate binding to hippocampal synaptic membranes after eyelid conditioning in the rabbit. We report that the regional distribution of [3H]glutamate binding across the layers of rabbit hippocampus is compatible with a dendritic localization. The pharmacological and ionic properties of the binding suggest that it is associated with an excitatory amino acid receptor. After eyelid conditioning, the maximal number of hippocampal [3H]glutamate-binding sites is increased in animals receiving paired presentations of the tone conditioned stimulus and corneal air-puff unconditioned stimulus relative to that found in naive or unpaired control animals. These results strengthen the hypothesis that an LTP-like mechanism underlies the increase in hippocampal firing frequency during rabbit eyelid conditioning.

Full text

PDF
2548

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnes C. A. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. 1979 Feb;93(1):74–104. doi: 10.1037/h0077579. [DOI] [PubMed] [Google Scholar]
  2. Baudry M., Bundman M. C., Smith E. K., Lynch G. S. Micromolar calcium stimulates proteolysis and glutamate binding in rat brain synaptic membranes. Science. 1981 May 22;212(4497):937–938. doi: 10.1126/science.7015504. [DOI] [PubMed] [Google Scholar]
  3. Baudry M., Lynch G. Characterization of two [3H]glutamate binding sites in rat hippocampal membranes. J Neurochem. 1981 Mar;36(3):811–820. doi: 10.1111/j.1471-4159.1981.tb01666.x. [DOI] [PubMed] [Google Scholar]
  4. Baudry M., Lynch G. Hippocampal glutamate receptors. Mol Cell Biochem. 1981 Aug 11;38(Spec No)(Pt 1):5–18. doi: 10.1007/BF00235685. [DOI] [PubMed] [Google Scholar]
  5. Baudry M., Lynch G. Hypothesis regarding the cellular mechanisms responsible for long-term synaptic potentiation in the hippocampus. Exp Neurol. 1980 Apr;68(1):202–204. doi: 10.1016/0014-4886(80)90078-3. [DOI] [PubMed] [Google Scholar]
  6. Baudry M., Lynch G. Regulation of hippocampal glutamate receptors: evidence for the involvement of a calcium-activated protease. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2298–2302. doi: 10.1073/pnas.77.4.2298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Baudry M., Oliver M., Creager R., Wieraszko A., Lynch G. Increase in glutamate receptors following repetitive electrical stimulation in hippocampal slices. Life Sci. 1980 Jul 28;27(4):325–330. doi: 10.1016/0024-3205(80)90200-3. [DOI] [PubMed] [Google Scholar]
  8. Berger T. W., Rinaldi P. C., Weisz D. J., Thompson R. F. Single-unit analysis of different hippocampal cell types during classical conditioning of rabbit nictitating membrane response. J Neurophysiol. 1983 Nov;50(5):1197–1219. doi: 10.1152/jn.1983.50.5.1197. [DOI] [PubMed] [Google Scholar]
  9. Berger T. W., Thompson R. F. Identification of pyramidal cells as the critical elements in hippocampal neuronal plasticity during learning. Proc Natl Acad Sci U S A. 1978 Mar;75(3):1572–1576. doi: 10.1073/pnas.75.3.1572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Berger T. W., Thompson R. F. Neuronal plasticity in the limbic system during classical conditioning of the rabbit nictitating membrane response. I. The hippocampus. Brain Res. 1978 Apr 28;145(2):323–346. doi: 10.1016/0006-8993(78)90866-1. [DOI] [PubMed] [Google Scholar]
  11. Berger T. W., Thompson R. F. Neuronal plasticity in the limbic system during classical conditioning of the rabbit nictitating membrane response. II: Septum and mammillary bodies. Brain Res. 1978 Nov 10;156(2):293–314. doi: 10.1016/0006-8993(78)90510-3. [DOI] [PubMed] [Google Scholar]
  12. Bliss T. V., Gardner-Medwin A. R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):357–374. doi: 10.1113/jphysiol.1973.sp010274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Bliss T. V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):331–356. doi: 10.1113/jphysiol.1973.sp010273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  15. Douglas R. M., Goddard G. V. Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Res. 1975 Mar 21;86(2):205–215. doi: 10.1016/0006-8993(75)90697-6. [DOI] [PubMed] [Google Scholar]
  16. Dunwiddie T. V., Lynch G. The relationship between extracellular calcium concentrations and the induction of hippocampal long-term potentiation. Brain Res. 1979 Jun 15;169(1):103–110. doi: 10.1016/0006-8993(79)90377-9. [DOI] [PubMed] [Google Scholar]
  17. Hippocampal long-term potentiation: mechanisms and implications for memory. Based on an NRP Work Session. Neurosci Res Program Bull. 1982 Jun;20(5):613–769. [PubMed] [Google Scholar]
  18. Lynch G., Halpain S., Baudry M. Effects of high-frequency synaptic stimulation on glumate receptor binding studied with a modified in vitro hippocampal slice preparation. Brain Res. 1982 Jul 22;244(1):101–111. doi: 10.1016/0006-8993(82)90908-8. [DOI] [PubMed] [Google Scholar]
  19. Slevin J., Collins J., Lindsley K., Coyle J. T. Specific binding of [3H]L-glutamate to cerebellar membranes: evidence for recognition site heterogeneity. Brain Res. 1982 Oct 14;249(2):353–360. doi: 10.1016/0006-8993(82)90069-5. [DOI] [PubMed] [Google Scholar]
  20. Storm-Mathisen J. Localization of transmitter candidates in the brain: the hippocampal formation as a model. Prog Neurobiol. 1977;8(2):119–181. doi: 10.1016/0301-0082(77)90013-2. [DOI] [PubMed] [Google Scholar]
  21. Vargas F., Greenbaum L., Costa E. Participation of cystein proteinase in the high affinity Ca2+-dependent binding of glutamate to hippocampal synaptic membranes. Neuropharmacology. 1980 Aug;19(8):791–794. doi: 10.1016/0028-3908(80)90072-6. [DOI] [PubMed] [Google Scholar]
  22. Werling L. L., Nadler J. V. Complex binding of L-[3H]glutamate to hippocampal synaptic membranes in the absence of sodium. J Neurochem. 1982 Apr;38(4):1050–1062. doi: 10.1111/j.1471-4159.1982.tb05347.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES