Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 May;81(9):2878–2881. doi: 10.1073/pnas.81.9.2878

Nondisulfide polymerization of gamma- and beta-crystallins in the human lens.

D Roy, J Dillon, E Wada, W Chaney, A Spector
PMCID: PMC345175  PMID: 6585833

Abstract

The water-soluble 43,000-dalton fraction (WS43) of the human lens has been shown to be heterogeneous. It appears to contain, in addition to actin, components related to the crystallins. Immunoblot reactions indicate that this polypeptide fraction is composed of dimers containing beta- and gamma-crystallin components. It has been estimated that 10-30% of this fraction arises by dimerization of gamma-crystallin. A possible route for the formation of the 43,000-dalton fraction is suggested by the observation that photolysis of gamma-crystallin with light greater than 295 nm leads to polymer formation, including the 43,000-dalton fraction. The polymerization products react with anti-WS43. The results suggest that photochemical reactions may lead to the accumulation of polymers of some of the crystallins with aging of the human lens. Similar covalently linked polypeptides have previously been shown to be present in the high molecular weight aggregates associated with cataract formation.

Full text

PDF
2878

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bornstein P. The biosynthesis of collagen. Annu Rev Biochem. 1974;43(0):567–603. doi: 10.1146/annurev.bi.43.070174.003031. [DOI] [PubMed] [Google Scholar]
  2. Bradley R. H., Ireland M., Maisel H. The cytoskeleton of chick lens cells. Exp Eye Res. 1979 Apr;28(4):441–453. doi: 10.1016/0014-4835(79)90119-2. [DOI] [PubMed] [Google Scholar]
  3. DISCHE Z., ZIL H. Studies on the oxidation of cysteine to cystine in lens proteins during cataract formation. Am J Ophthalmol. 1951 May;34(5 2):104–113. doi: 10.1016/0002-9394(51)90013-x. [DOI] [PubMed] [Google Scholar]
  4. Dillon J., Garner M., Roy D., Spector A. The photolysis of lens protein: molecular changes. Exp Eye Res. 1982 May;34(5):651–658. doi: 10.1016/s0014-4835(82)80027-4. [DOI] [PubMed] [Google Scholar]
  5. Gallop P. M., Paz M. A. Posttranslational protein modifications, with special attention to collagen and elastin. Physiol Rev. 1975 Jul;55(3):418–487. doi: 10.1152/physrev.1975.55.3.418. [DOI] [PubMed] [Google Scholar]
  6. Garner M. H., Spector A. Selective oxidation of cysteine and methionine in normal and senile cataractous lenses. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1274–1277. doi: 10.1073/pnas.77.3.1274. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Garner W. H., Garner M. H., Spector A. Comparison of the 10 000 and 43 000 dalton polypeptide populations isolated from the water soluble and insoluble fractions of human cataractous lenses. Exp Eye Res. 1979 Sep;29(3):257–276. doi: 10.1016/0014-4835(79)90006-x. [DOI] [PubMed] [Google Scholar]
  8. Haley J. E., Flood M. T., Gouras P., Kjeldbye H. M. Proteins from human retinal pigment epithelial cells: evidence that a major protein is actin. Invest Ophthalmol Vis Sci. 1983 Jul;24(7):803–811. [PubMed] [Google Scholar]
  9. Kibbelaar M. A., Selten-Versteegen A. M., Dunia I., Benedetti E. L., Bloemendal H. Actin in mammalian lens. Eur J Biochem. 1979 Apr;95(3):543–549. doi: 10.1111/j.1432-1033.1979.tb12995.x. [DOI] [PubMed] [Google Scholar]
  10. Kramps H. A., Hoenders H. J., Wollensak J. Protein changes in the human lens during development of senile nuclear cataract. Biochim Biophys Acta. 1976 May 20;434(1):32–43. doi: 10.1016/0005-2795(76)90032-5. [DOI] [PubMed] [Google Scholar]
  11. Kremzner L. T., Roy D., Spector A. Polyamines in normal and cataractous human lenses: evidence for post-translational modification. Exp Eye Res. 1983 Dec;37(6):649–659. doi: 10.1016/0014-4835(83)90139-2. [DOI] [PubMed] [Google Scholar]
  12. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  13. Langone J. J. 125I-Labeled protein A: reactivity with IgG and use as a tracer in radioimmunoassay. Methods Enzymol. 1980;70(A):356–375. doi: 10.1016/s0076-6879(80)70064-2. [DOI] [PubMed] [Google Scholar]
  14. Lazarides E. Antibody production and immunofluorescent characterization of actin and contractile proteins. Methods Cell Biol. 1982;24:313–331. doi: 10.1016/s0091-679x(08)60664-0. [DOI] [PubMed] [Google Scholar]
  15. Lorand L., Hsu L. K., Siefring G. E., Jr, Rafferty N. S. Lens transglutaminase and cataract formation. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1356–1360. doi: 10.1073/pnas.78.3.1356. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Malinowski K., Manski W. Antibody response and subunit structure of calf lens alpha crystallin. Immunochemistry. 1977 Aug;14(8):603–609. doi: 10.1016/0019-2791(77)90156-2. [DOI] [PubMed] [Google Scholar]
  17. Reiser J., Wardale J. Immunological detection of specific proteins in total cell extracts by fractionation in gels and transfer to diazophenylthioether paper. Eur J Biochem. 1981 Mar;114(3):569–575. doi: 10.1111/j.1432-1033.1981.tb05182.x. [DOI] [PubMed] [Google Scholar]
  18. Selkoe D. J., Abraham C., Ihara Y. Brain transglutaminase: in vitro crosslinking of human neurofilament proteins into insoluble polymers. Proc Natl Acad Sci U S A. 1982 Oct;79(19):6070–6074. doi: 10.1073/pnas.79.19.6070. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Spector A., Garner M. H., Garner W. H., Roy D., Farnsworth P., Shyne S. An extrinsic membrane polypeptide associated with high-molecular-weight protein aggregates in human cataract. Science. 1979 Jun 22;204(4399):1323–1326. doi: 10.1126/science.377484. [DOI] [PubMed] [Google Scholar]
  20. Spector A., Roy D. Disulfide-linked high molecular weight protein associated with human cataract. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3244–3248. doi: 10.1073/pnas.75.7.3244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Spector A., Roy D., Stauffer J. Isolation and characterization of an age-dependent polypeptide from human lens with non-tryptophan fluorescence. Exp Eye Res. 1975 Jul;21(1):9–24. doi: 10.1016/0014-4835(75)90053-6. [DOI] [PubMed] [Google Scholar]
  22. Truscott R. J., Augusteyn R. C. Oxidative changes in human lens proteins during senile nuclear cataract formation. Biochim Biophys Acta. 1977 May 27;492(1):43–52. doi: 10.1016/0005-2795(77)90212-4. [DOI] [PubMed] [Google Scholar]
  23. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES