Abstract
A model, based on amino acid sequence data, is proposed for the organization of the myelin proteolipid in myelin membrane. The model has three distinctive features: three trans-membrane segments that traverse the lipid bilayer, two cis-membrane domains that enter and exit the same side of the membrane, and a highly charged segment resembling myelin basic protein on the cytoplasmic side of the membrane. It is proposed that the cis-membrane domain(s) can promote the formation and stabilization of the multilamellar myelin structure by hydrophobic interaction with the apposite bilayer across the extracellular space.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Argos P., Rao J. K., Hargrave P. A. Structural prediction of membrane-bound proteins. Eur J Biochem. 1982 Nov 15;128(2-3):565–575. doi: 10.1111/j.1432-1033.1982.tb07002.x. [DOI] [PubMed] [Google Scholar]
- Boggs J. M., Moscarello M. A. Structural organization of the human myelin membrane. Biochim Biophys Acta. 1978 Apr 10;515(1):1–21. doi: 10.1016/0304-4157(78)90006-0. [DOI] [PubMed] [Google Scholar]
- Caspar D. L., Kirschner D. A. Myelin membrane structure at 10 A resolution. Nat New Biol. 1971 May 12;231(19):46–52. doi: 10.1038/newbio231046a0. [DOI] [PubMed] [Google Scholar]
- Chan D. S., Lees M. B. Tryptic peptides from bovine white matter proteolipids. J Neurochem. 1978 May;30(5):983–990. doi: 10.1111/j.1471-4159.1978.tb12390.x. [DOI] [PubMed] [Google Scholar]
- Chou P. Y., Fasman G. D. Prediction of the secondary structure of proteins from their amino acid sequence. Adv Enzymol Relat Areas Mol Biol. 1978;47:45–148. doi: 10.1002/9780470122921.ch2. [DOI] [PubMed] [Google Scholar]
- Dailey H. A., Strittmatter P. Orientation of the carboxyl and NH2 termini of the membrane-binding segment of cytochrome b5 on the same side of phospholipid bilayers. J Biol Chem. 1981 Apr 25;256(8):3951–3955. [PubMed] [Google Scholar]
- Dijkstra B. W., Drenth J., Kalk K. H., Vandermaelen P. J. Three-dimensional structure and disulfide bond connections in bovine pancreatic phospholipase A2. J Mol Biol. 1978 Sep 5;124(1):53–60. doi: 10.1016/0022-2836(78)90146-8. [DOI] [PubMed] [Google Scholar]
- Engelman D. M., Henderson R., McLachlan A. D., Wallace B. A. Path of the polypeptide in bacteriorhodopsin. Proc Natl Acad Sci U S A. 1980 Apr;77(4):2023–2027. doi: 10.1073/pnas.77.4.2023. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Engelman D. M., Steitz T. A. The spontaneous insertion of proteins into and across membranes: the helical hairpin hypothesis. Cell. 1981 Feb;23(2):411–422. doi: 10.1016/0092-8674(81)90136-7. [DOI] [PubMed] [Google Scholar]
- Jollès J., Nussbaum J. L., Jollès P. Enzymic and chemical fragmentation of the apoprotein of the major rat brain myelin proteolipid. Biochim Biophys Acta. 1983 Jan 12;742(1):33–38. doi: 10.1016/0167-4838(83)90355-2. [DOI] [PubMed] [Google Scholar]
- Jollès J., Schoentgen F., Jollès P., Vacher M., Nicot C., Alfsen A. Structural studies of the apoprotein of the Folch-Pi bovine brain myelin proteolipid : characterization of the CNBr-fragments and of a long C-terminal sequence. Biochem Biophys Res Commun. 1979 Mar 30;87(2):619–626. doi: 10.1016/0006-291x(79)91839-4. [DOI] [PubMed] [Google Scholar]
- KENDREW J. C., WATSON H. C., STRANDBERG B. E., DICKERSON R. E., PHILLIPS D. C., SHORE V. C. The amino-acid sequence x-ray methods, and its correlation with chemical data. Nature. 1961 May 20;190:666–670. doi: 10.1038/190666a0. [DOI] [PubMed] [Google Scholar]
- Kyte J., Doolittle R. F. A simple method for displaying the hydropathic character of a protein. J Mol Biol. 1982 May 5;157(1):105–132. doi: 10.1016/0022-2836(82)90515-0. [DOI] [PubMed] [Google Scholar]
- Laursen R. A., Samiullah M., Lees M. B. Gene duplication in bovine brain myelin proteolipid and homology with related proteins. FEBS Lett. 1983 Sep 5;161(1):71–74. doi: 10.1016/0014-5793(83)80732-7. [DOI] [PubMed] [Google Scholar]
- Lees M. B., Chao B. H., Lin L. F., Samiullah M., Laursen R. A. Amino acid sequence of bovine white matter proteolipid. Arch Biochem Biophys. 1983 Oct 15;226(2):643–656. doi: 10.1016/0003-9861(83)90334-x. [DOI] [PubMed] [Google Scholar]
- Lees M. B., Leston J. A., Marfey P. Carboxymethylation of sulphydryl groups in proteolipids. J Neurochem. 1969 Jun;16(3):1025–1032. doi: 10.1111/j.1471-4159.1969.tb08993.x. [DOI] [PubMed] [Google Scholar]
- Lees M. B., Sakura J. D., Sapirstein V. S., Curatolo W. Structure and function of proteolipids in myelin and non-myelin membranes. Biochim Biophys Acta. 1979 Aug 20;559(2-3):209–230. doi: 10.1016/0304-4157(79)90002-9. [DOI] [PubMed] [Google Scholar]
- Martenson R. E. Prediction of the secondary structure of myelin basic protein. J Neurochem. 1981 Apr;36(4):1543–1560. doi: 10.1111/j.1471-4159.1981.tb00598.x. [DOI] [PubMed] [Google Scholar]
- Richardson J. S. The anatomy and taxonomy of protein structure. Adv Protein Chem. 1981;34:167–339. doi: 10.1016/s0065-3233(08)60520-3. [DOI] [PubMed] [Google Scholar]
- Rose G. D. Prediction of chain turns in globular proteins on a hydrophobic basis. Nature. 1978 Apr 13;272(5654):586–590. doi: 10.1038/272586a0. [DOI] [PubMed] [Google Scholar]
- Rose G. D., Young W. B., Gierasch L. M. Interior turns in globular proteins. Nature. 1983 Aug 18;304(5927):654–657. doi: 10.1038/304654a0. [DOI] [PubMed] [Google Scholar]
- Stoffel W., Hillen H., Schröder W., Deutzmann R. The primary structure of bovine brain myelin lipophilin (proteolipid apoprotein). Hoppe Seylers Z Physiol Chem. 1983 Oct;364(10):1455–1466. doi: 10.1515/bchm2.1983.364.2.1455. [DOI] [PubMed] [Google Scholar]
- Weinstein J. N., Blumenthal R., van Renswoude J., Kempf C., Klausner R. D. Charge clusters and the orientation of membrane proteins. J Membr Biol. 1982;66(3):203–212. doi: 10.1007/BF01868495. [DOI] [PubMed] [Google Scholar]

