Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 May;81(9):2941–2943. doi: 10.1073/pnas.81.9.2941

Enhanced oxygen unloading by an interdimerically crosslinked hemoglobin in an isolated perfused rabbit heart.

R Benesch, L Triner, R E Benesch, S Kwong, M Verosky
PMCID: PMC345190  PMID: 6585838

Abstract

Coronary perfusion has shown that an intramolecularly crosslinked hemoglobin (Hb) with a very low affinity for O2 (Hb crosslinked covalently between the beta chains with 2-nor-2-formylpyridoxal 5'-phosphate, HbXL) has several advantages over ordinary Hb. As predicted from in vitro oxygenation curves, much more O2 was unloaded to the heart at three different heart rates, at two perfusion rates, and when the perfusate was equilibrated with 25% as well as 95% O2. In all cases, the improved O2 unloading occurred at higher tissue O2 pressures than with normal Hb. The greater O2 consumption with HbXL was accompanied by better mechanical performance because, after 90 min of perfusion, the HbXL-perfused hearts maintained two-thirds of their original contractility (dp/dt), while that of the Hb-perfused hearts had declined to one-fifth. A special advantage of HbXL is its ability to unload significant amounts of O2 even at low temperature (10 degrees C), in contrast to whole blood. This should make it useful for supporting aerobic metabolism during low-temperature cardioplegia in cardiac surgery and for organ preservation.

Full text

PDF
2941

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham E. C., Reese A., Stallings M., Huisman T. H. Separation of human hemoglobins by DEAE-cellulose chromatography using glycine-KCN-NaC1 developers. Hemoglobin. 1976;1(1):27–44. doi: 10.3109/03630267609031020. [DOI] [PubMed] [Google Scholar]
  2. Arnone A., Benesch R. E., Benesch R. Structure of human deoxyhemoglobin specifically modified with pyridoxal compounds. J Mol Biol. 1977 Oct 5;115(4):627–642. doi: 10.1016/0022-2836(77)90107-3. [DOI] [PubMed] [Google Scholar]
  3. BENESCH R., MACDUFF G., BENESCH R. E. DETERMINATION OF OXYGEN EQUILIBRIA WITH A VERSATILE NEW TONOMETER. Anal Biochem. 1965 Apr;11:81–87. doi: 10.1016/0003-2697(65)90045-x. [DOI] [PubMed] [Google Scholar]
  4. Benesch R. E., Benesch R., Renthal R. D., Maeda N. Affinity labeling of the polyphosphate binding site of hemoglobin. Biochemistry. 1972 Sep 12;11(19):3576–3582. doi: 10.1021/bi00769a013. [DOI] [PubMed] [Google Scholar]
  5. Benesch R. E., Benesch R., Yung S. Equations for the spectrophotometric analysis of hemoglobin mixtures. Anal Biochem. 1973 Sep;55(1):245–248. doi: 10.1016/0003-2697(73)90309-6. [DOI] [PubMed] [Google Scholar]
  6. Benesch R. E., Kwong S., Edalji R., Benesch R. alpha Chain mutations with opposite effects on the gelation of hemoglobin S. J Biol Chem. 1979 Sep 10;254(17):8169–8172. [PubMed] [Google Scholar]
  7. Benesch R., Benesch R. E. Preparation and properties of hemoglobin modified with derivatives of pyridoxal. Methods Enzymol. 1981;76:147–159. doi: 10.1016/0076-6879(81)76123-8. [DOI] [PubMed] [Google Scholar]
  8. Benesch R., Benesch R. E., Yung S., Edalji R. Hemoglobin covalently bridged across the polyphoshate binding site. Biochem Biophys Res Commun. 1975 Apr 21;63(4):1123–1129. doi: 10.1016/0006-291x(75)90685-3. [DOI] [PubMed] [Google Scholar]
  9. DeVenuto F. Hemoglobin solutions as oxygen-delivering resuscitation fluids. Crit Care Med. 1982 Apr;10(4):238–245. doi: 10.1097/00003246-198204000-00002. [DOI] [PubMed] [Google Scholar]
  10. DiDonato A., Fantl W. J., Acharya A. S., Manning J. M. Selective carboxymethylation of the alpha-amino groups of hemoglobin. Effect on functional properties. J Biol Chem. 1983 Oct 10;258(19):11890–11895. [PubMed] [Google Scholar]
  11. Greenburg A. G., Schooley M., Peskin G. W. Improved retention of stroma-free hemoglobin solution by chemical modification. J Trauma. 1977 Jul;17(7):501–504. doi: 10.1097/00005373-197707000-00003. [DOI] [PubMed] [Google Scholar]
  12. Holdefer W. F., Jr, Dowling E. A. Experimental use of heterologous stroma-free hemoglobin solution (SFHS) as a whole blood substitute. J Surg Oncol. 1974;6(5):451–459. doi: 10.1002/jso.2930060509. [DOI] [PubMed] [Google Scholar]
  13. Moores W. Y., De Venuto F., Heydorn W. H., Weiskopf R. B., Baysinger M., Greenburg A. G., Utley J. R. Extending the limits of hemodilution on cardiopulmonary bypass using stroma-free hemoglobin solution. J Thorac Cardiovasc Surg. 1981 Feb;81(2):155–162. [PubMed] [Google Scholar]
  14. Moores W. Y., DeVenuto F., Heydorn W. H., Greenburg A. G., Utley J. R. Effectiveness of stroma-free hemoglobin solution as seen in a right heart bypass swine model. Crit Care Med. 1982 Apr;10(4):279–282. doi: 10.1097/00003246-198204000-00009. [DOI] [PubMed] [Google Scholar]
  15. Riedesel W. M., 2nd, Erdamar I., Dos S. J. Functional preservation of canine heart-lung preparations by perfusion with pure haemoglobin solution. Nature. 1973 Jun 29;243(5409):530–531. doi: 10.1038/243530a0. [DOI] [PubMed] [Google Scholar]
  16. Sehgal L. R., Rosen A. L., Gould S. A., Sehgal H. L., Moss G. S. An appraisal of polymerized pyridoxylated hemoglobin as an acellular oxygen carrier. Prog Clin Biol Res. 1983;122:19–28. [PubMed] [Google Scholar]
  17. Sehgal L. R., Rosen A. L., Noud G., Sehgal H. L., Gould S. A., DeWoskin R., Rice C. L., Moss G. S. Large-volume preparation of pyridoxylated hemoglobin with high P50. J Surg Res. 1981 Feb;30(1):14–20. doi: 10.1016/0022-4804(81)90065-2. [DOI] [PubMed] [Google Scholar]
  18. Suaudeau J., Fallon J. T., Austen W. G., Erdmann A. J., 3rd Stroma-free hemoglobin solution for perfusion of the isolated lamb heart at 38 degrees C. Trans Am Soc Artif Intern Organs. 1978;24:261–269. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES