Abstract
Sterol carrier protein (SCP) is a highly abundant, ubiquitous, low molecular weight protein that has a rapid turnover and multifunctional roles in lipid metabolism and transport. It is also known as the fatty acid-binding protein. These and other characteristics led to studies on the possible role of SCP in mediation of steroidogenic responses of the adrenal gland to corticotropin. To quantitate the level of SCP in adrenal tissue and subcellular fractions, a specific immunochemical assay was developed using an antibody to homogeneous liver SCP. SCP is a major protein in adrenal cells (greater than 100 micrograms/mg of total protein). The bulk of it is present in the soluble (60%) and mitochondrial (35%) fractions. Nearly all mitochondrial SCP is present in the inner membrane. Adrenal SCP undergoes a dramatic diurnal variation, varying from 2% to 12% of total protein. When corticotropin was administered in vivo in the presence of aminoglutethimide, an inhibitor of steroidogenesis, there was a parallel movement of SCP with cholesterol to the inner mitochondrial membrane. Other work showed mitochondrial SCP levels increase only in situations where there is an increase in cholesterol levels. These findings strongly suggest that one of the functions of adrenal SCP is to participate in teh corticotropin-stimulated movement of cholesterol to the inner mitochondrial membrane for steroidogenesis.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Balasubramaniam S., Goldstein J. L., Faust J. R., Brunschede G. Y., Brown M. S. Lipoprotein-mediated regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity and cholesteryl ester metabolism in the adrenal gland of the rat. J Biol Chem. 1977 Mar 10;252(5):1771–1779. [PubMed] [Google Scholar]
- Caras I. W., Bloch K. Effects of a supernatant protein activator on microsomal squalene-2,3-oxide-lanosterol cyclase. J Biol Chem. 1979 Dec 10;254(23):11816–11821. [PubMed] [Google Scholar]
- Chanderbhan R., Noland B. J., Scallen T. J., Vahouny G. V. Sterol carrier protein2. Delivery of cholesterol from adrenal lipid droplets to mitochondria for pregnenolone synthesis. J Biol Chem. 1982 Aug 10;257(15):8928–8934. [PubMed] [Google Scholar]
- Churchill P. F., Kimura T. Topological studies of cytochromes P-450scc and P-45011 beta in bovine adrenocortical inner mitochondrial membranes. Effects of controlled tryptic digestion. J Biol Chem. 1979 Oct 25;254(20):10443–10448. [PubMed] [Google Scholar]
- Conneely O. M., Greene J. M., Headon D. R., Hsiao J., Ungar F. Distribution of membrane cholesterol of adrenal cortical cells after corticotropin stimulation. Biochem J. 1983 Aug 15;214(2):561–567. doi: 10.1042/bj2140561. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Crivello J. F., Jefcoate C. R. Mechanisms of corticotropin action in rat adrenal cells. I. The effects of inhibitors of protein synthesis and of microfilament formation on corticosterone synthesis. Biochim Biophys Acta. 1978 Aug 17;542(2):315–329. doi: 10.1016/0304-4165(78)90027-2. [DOI] [PubMed] [Google Scholar]
- Dempsey M. E., McCoy K. E., Baker H. N., Dimitriadou-Vafiadou A., Lorsbach T., Howard J. B. Large scale purification and structural characterization of squalene and sterol carrier protein. J Biol Chem. 1981 Feb 25;256(4):1867–1873. [PubMed] [Google Scholar]
- Dempsey M. E. Regulation of lipid metabolism by a lipid-carrying protein. Curr Top Cell Regul. 1984;24:63–86. doi: 10.1016/b978-0-12-152824-9.50014-9. [DOI] [PubMed] [Google Scholar]
- Dempsey M. E. Regulation of steroid biosynthesis. Annu Rev Biochem. 1974;43(0):967–990. doi: 10.1146/annurev.bi.43.070174.004535. [DOI] [PubMed] [Google Scholar]
- FERGUSON J. J., Jr PROTEIN SYNTHESIS AND ADRENOCORTICOTROPIN RESPONSIVENESS. J Biol Chem. 1963 Aug;238:2754–2759. [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Garren L. D., Gill G. N., Masui H., Walton G. M. On the mechanism of action of ACTH. Recent Prog Horm Res. 1971;27:433–478. doi: 10.1016/b978-0-12-571127-2.50035-3. [DOI] [PubMed] [Google Scholar]
- Gordon J. I., Alpers D. H., Ockner R. K., Strauss A. W. The nucleotide sequence of rat liver fatty acid binding protein mRNA. J Biol Chem. 1983 Mar 10;258(5):3356–3363. [PubMed] [Google Scholar]
- Goudswaard J., van der Donk J. A., Noordzij A., van Dam R. H., Vaerman J. P. Protein A reactivity of various mammalian immunoglobulins. Scand J Immunol. 1978;8(1):21–28. doi: 10.1111/j.1365-3083.1978.tb00492.x. [DOI] [PubMed] [Google Scholar]
- Greenawalt J. W. The isolation of outer and inner mitochondrial membranes. Methods Enzymol. 1974;31:310–323. doi: 10.1016/0076-6879(74)31033-6. [DOI] [PubMed] [Google Scholar]
- Hall P. F., Charpponnier C., Nakamura M., Gabbiani G. The role of microfilaments in the response of adrenal tumor cells to adrenocorticotropic hormone. J Biol Chem. 1979 Sep 25;254(18):9080–9084. [PubMed] [Google Scholar]
- Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
- Headon D. R., Hsiao J., Ungar F. The intracellular localization of adrenal 3beta-hydroxysteroid dehydrogenase/delta5-isomerase by density gradient perturbation. Biochem Biophys Res Commun. 1978 Jun 14;82(3):1006–1012. doi: 10.1016/0006-291x(78)90883-5. [DOI] [PubMed] [Google Scholar]
- Jefcoate C. R., Simpson E. R., Boyd G. S., Brownie A. C., Orme-Johnson W. H. The detection of different states of the P-450 cytochromes in adrenal mitochondria: changes induced by ACTH. Ann N Y Acad Sci. 1973;212:243–261. doi: 10.1111/j.1749-6632.1973.tb47600.x. [DOI] [PubMed] [Google Scholar]
- Jefcoate C. R., Simpson E. R., Boyd G. S. Spectral properties of rat adrenal-mitochondrial cytochrome P-450. Eur J Biochem. 1974 Mar 1;42(2):539–551. doi: 10.1111/j.1432-1033.1974.tb03369.x. [DOI] [PubMed] [Google Scholar]
- Kan K. W., Ritter M. C., Ungar F., Dempsey M. E. The role of a carrier protein in cholesterol and steroid hormone synthesis by adrenal enzymes, 1,2. Biochem Biophys Res Commun. 1972 Jul 25;48(2):423–429. doi: 10.1016/s0006-291x(72)80068-8. [DOI] [PubMed] [Google Scholar]
- Kan K. W., Ungar F. Characterization of an adrenal activator for cholesterol side chain cleavage. J Biol Chem. 1973 Apr 25;248(8):2868–2875. [PubMed] [Google Scholar]
- Mahaffee D., Reitz R. C., Ney R. L. The mechanism of action of adrenocroticotropic hormone. The role of mitochondrial cholesterol accumulation in the regulation of steroidogenesis. J Biol Chem. 1974 Jan 10;249(1):227–233. [PubMed] [Google Scholar]
- Noland B. J., Arebalo R. E., Hansbury E., Scallen T. J. Purification and properties of sterol carrier protein2. J Biol Chem. 1980 May 10;255(9):4282–4289. [PubMed] [Google Scholar]
- O'Hare M. J., Neville A. M. The steroidogenic response of adult rat adrenocortical cells in monolayer culture. J Endocrinol. 1973 Mar;56(3):537–549. doi: 10.1677/joe.0.0560537. [DOI] [PubMed] [Google Scholar]
- Ockner R. K., Manning J. A., Kane J. P. Fatty acid binding protein. Isolation from rat liver, characterization, and immunochemical quantification. J Biol Chem. 1982 Jul 10;257(13):7872–7878. [PubMed] [Google Scholar]
- Pedersen R. C., Brownie A. C. Cholesterol side-chain cleavage in the rat adrenal cortex: isolation of a cycloheximide-sensitive activator peptide. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1882–1886. doi: 10.1073/pnas.80.7.1882. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Privalle C. T., Crivello J. F., Jefcoate C. R. Regulation of intramitochondrial cholesterol transfer to side-chain cleavage cytochrome P-450 in rat adrenal gland. Proc Natl Acad Sci U S A. 1983 Feb;80(3):702–706. doi: 10.1073/pnas.80.3.702. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ritter M. C., Dempsey M. E. Specificity and role in cholesterol biosynthesis of a squalene and sterol carrier protein. J Biol Chem. 1971 Mar 10;246(5):1536–1539. [PubMed] [Google Scholar]
- Ritter M. C., Dempsey M. E. Squalene and sterol carrier protein: structural properties, lipid-binding, and function in cholesterol biosynthesis. Proc Natl Acad Sci U S A. 1973 Jan;70(1):265–269. doi: 10.1073/pnas.70.1.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schimke R. T. Methods for analysis of enzyme synthesis and degradation in animal tissues. Methods Enzymol. 1975;40:241–266. doi: 10.1016/s0076-6879(75)40020-9. [DOI] [PubMed] [Google Scholar]
- Song M. K., Dempsey M. E. Requirement for a major soluble protein in the conversion of lanosterol to cholesterol by membrane-bound enzymes. Arch Biochem Biophys. 1981 Oct 15;211(2):523–529. doi: 10.1016/0003-9861(81)90486-0. [DOI] [PubMed] [Google Scholar]
- Vahouny G. V., Chanderbhan R., Noland B. J., Irwin D., Dennis P., Lambeth J. D., Scallen T. J. Sterol carrier protein2. Identification of adrenal sterol carrier protein2 and site of action for mitochondrial cholesterol utilization. J Biol Chem. 1983 Oct 10;258(19):11731–11737. [PubMed] [Google Scholar]
- Warne P. A., Greenfield N. J., Lieberman S. Modulation of the kinetics of cholesterol side-chain cleavage by an activator and by an inhibitor isolated from the cytosol of the cortex of bovine adrenals. Proc Natl Acad Sci U S A. 1983 Apr;80(7):1877–1881. doi: 10.1073/pnas.80.7.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yago N., Ichii S. Submitochondrial distribution of components of the steroid 11 beta-hydroxylase and cholesterol sidechain-cleaving enzyme systems in hog adrenal cortex. J Biochem. 1969 Feb;65(2):215–224. [PubMed] [Google Scholar]