Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1984 May;81(10):2990–2994. doi: 10.1073/pnas.81.10.2990

Characterization and postulated structure of the primary emitter in the bacterial luciferase reaction

Manfred Kurfürst †,, Sandro Ghisla , J Woodland Hastings
PMCID: PMC345206  PMID: 16593462

Abstract

An intermediate identifiable as the emitter in bacterial bioluminescence has been demonstrated. The reaction was carried out at 1°C by mixing purified luciferase-bound FMN 4a-hydroperoxide with long-chain aldehyde (decanal). Simultaneous kinetic measurements of bioluminescence and absorbance showed that the decay of light emission occurred more rapidly than the appearance of the stable product, oxidized FMN, indicating the formation of a transient intermediate species subsequent to light emission. The same species was found in reaction mixtures examined immediately after light emission was completed. It has a relatively short half-life (7 min at 9°C); the chromophore is postulated to be the luciferase-bound flavin 4a-hydroxide and to decay to the stable product, FMN, by losing water. Both its absorption spectrum (λmax, 360 nm) and its fluorescence emission (λmax, 490 nm) are consistent with the hypothesis that this is the ground state of the primary emitter, the bioluminescent species produced in the reaction.

Keywords: bioluminescence, luminescence (light emission), fluorescence, flavin chromophore, peroxide intermediate

Full text

PDF
2990

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin T. O., Nicoli M. Z., Becvar J. E., Hastings J. W. Bacterial luciferase. Binding of oxidized flavin mononucleotide. J Biol Chem. 1975 Apr 25;250(8):2763–2768. [PubMed] [Google Scholar]
  2. Baldwin T. O. The binding and spectral alterations of oxidized flavin mononucleotide by bacterial luciferase. Biochem Biophys Res Commun. 1974 Apr 23;57(4):1000–1005. doi: 10.1016/0006-291x(74)90795-5. [DOI] [PubMed] [Google Scholar]
  3. Balny C., Hastings J. W. Fluorescence and bioluminescence of bacterial luciferase intermediates. Biochemistry. 1975 Oct 21;14(21):4719–4723. doi: 10.1021/bi00692a024. [DOI] [PubMed] [Google Scholar]
  4. Beaty N. B., Ballou D. P. The oxidative half-reaction of liver microsomal FAD-containing monooxygenase. J Biol Chem. 1981 May 10;256(9):4619–4625. [PubMed] [Google Scholar]
  5. Becvar J. E., Tu S. C., Hastings J. W. Activity and stability of the luciferase--flavin intermediate. Biochemistry. 1978 May 2;17(9):1807–1812. doi: 10.1021/bi00602a036. [DOI] [PubMed] [Google Scholar]
  6. Eberhard A., Hastings J. W. A postulated mechanism for the bioluminescent oxidation of reduced flavin mononucleotide. Biochem Biophys Res Commun. 1972 Apr 28;47(2):348–353. doi: 10.1016/0006-291x(72)90719-x. [DOI] [PubMed] [Google Scholar]
  7. Entsch B., Ballou D. P., Massey V. Flavin-oxygen derivatives involved in hydroxylation by p-hydroxybenzoate hydroxylase. J Biol Chem. 1976 May 10;251(9):2550–2563. [PubMed] [Google Scholar]
  8. Gast R., Lee J. Isolation of the in vivo emitter in bacterial bioluminescence. Proc Natl Acad Sci U S A. 1978 Feb;75(2):833–837. doi: 10.1073/pnas.75.2.833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ghisla S., Entsch B., Massey V., Husein M. On the structure of flavin-oxygen intermediates involved in enzymatic reactions. Eur J Biochem. 1977 Jun 1;76(1):139–148. doi: 10.1111/j.1432-1033.1977.tb11579.x. [DOI] [PubMed] [Google Scholar]
  10. Ghisla S. Fluorescence and optical characteristics of reduced flavins and flavoproteins. Methods Enzymol. 1980;66:360–373. doi: 10.1016/0076-6879(80)66481-7. [DOI] [PubMed] [Google Scholar]
  11. Ghisla S., Hastings J. W., Favaudon V., Lhoste J. M. Structure of the oxygen adduct intermediate in the bacterial luciferase reaction: C nuclear magnetic resonance determination. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5860–5863. doi: 10.1073/pnas.75.12.5860. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ghisla S., Massey V., Lhoste J. M., Mayhew S. G. Fluorescence and optical characteristics of reduced flavines and flavoproteins. Biochemistry. 1974 Jan 29;13(3):589–597. doi: 10.1021/bi00700a029. [DOI] [PubMed] [Google Scholar]
  13. Hastings J. W., Balny C., Peuch C. L., Douzou P. Spectral properties of an oxygenated luciferase-flavin intermediate isolated by low-temperature chromatography. Proc Natl Acad Sci U S A. 1973 Dec;70(12 Pt 1-2):3468–3472. doi: 10.1073/pnas.70.12.3468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hastings J. W., Balny C. The oxygenated bacterial luciferase-flavin intermediate. Reaction products via the light and dark pathways. J Biol Chem. 1975 Sep 25;250(18):7288–7293. [PubMed] [Google Scholar]
  15. Hastings J. W., Nealson K. H. Bacterial bioluminescence. Annu Rev Microbiol. 1977;31:549–595. doi: 10.1146/annurev.mi.31.100177.003001. [DOI] [PubMed] [Google Scholar]
  16. Hastings J. W., Wilson T. Bioluminescence and chemiluminescence. Photochem Photobiol. 1976 Jun;23(6):461–473. doi: 10.1111/j.1751-1097.1976.tb07282.x. [DOI] [PubMed] [Google Scholar]
  17. Kemal C., Chan T. W., Bruice T. C. Chemiluminescent reactions and electrophilic oxygen donating ability of 4a-hydroperoxyflavins: general synthetic method for the preparation of N5-alkyl-1,5-dihydroflavins. Proc Natl Acad Sci U S A. 1977 Feb;74(2):405–409. doi: 10.1073/pnas.74.2.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Koka P., Lee J. Separation and structure of the prosthetic group of the blue fluorescence protein from the bioluminescent bacterium Photobacterium phosphoreum. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3068–3072. doi: 10.1073/pnas.76.7.3068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kosower E. M. A proposed mechanism for light emission by bacterial luciferase involving dissociative electron transfer. Biochem Biophys Res Commun. 1980 Jan 29;92(2):356–364. doi: 10.1016/0006-291x(80)90341-1. [DOI] [PubMed] [Google Scholar]
  20. Kurfürst M., Ghisla S., Hastings J. W. Bioluminescence emission from the reaction of luciferase-flavin mononucleotide radical with O2-.. Biochemistry. 1983 Mar 29;22(7):1521–1525. doi: 10.1021/bi00276a001. [DOI] [PubMed] [Google Scholar]
  21. Kurfürst M., Ghisla S., Presswood R., Hastings J. W. Structure and catalytic inactivity of the bacterial luciferase neutral flavin radical. Eur J Biochem. 1982 Apr 1;123(2):355–361. doi: 10.1111/j.1432-1033.1982.tb19775.x. [DOI] [PubMed] [Google Scholar]
  22. Matheson I. B., Lee J. An efficient bacterial bioluminescence with reduced lumichrome. Biochem Biophys Res Commun. 1981 May 29;100(2):532–536. doi: 10.1016/s0006-291x(81)80209-4. [DOI] [PubMed] [Google Scholar]
  23. Mayhew S. G., Strating M. J. Properties of immobilized flavodoxin from Peptostreptococcus elsdenii. An affinity ligand for the purification of riboflavin 5'-phosphate (FMN) and its analogues. Eur J Biochem. 1975 Nov 15;59(2):539–544. doi: 10.1111/j.1432-1033.1975.tb02480.x. [DOI] [PubMed] [Google Scholar]
  24. McCapra F., Hysert D. W. Bacterial bioluminescence-identification of fatty acid as product, its quantum yield and a suggested mechanism. Biochem Biophys Res Commun. 1973 May 1;52(1):298–304. doi: 10.1016/0006-291x(73)90987-x. [DOI] [PubMed] [Google Scholar]
  25. Mitchell G. W., Hastings J. W. A stable, inexpensive, solid-state photomultiplier photometer. Anal Biochem. 1971 Jan;39(1):243–250. doi: 10.1016/0003-2697(71)90481-7. [DOI] [PubMed] [Google Scholar]
  26. Mitchell G., Hastings J. W. The effect of flavin isomers and analogues upon the color of bacterial bioluminescence. J Biol Chem. 1969 May 25;244(10):2572–2576. [PubMed] [Google Scholar]
  27. Morin J. G., Hastings J. W. Biochemistry of the bioluminescence of colonial hydroids and other coelenterates. J Cell Physiol. 1971 Jun;77(3):305–312. doi: 10.1002/jcp.1040770304. [DOI] [PubMed] [Google Scholar]
  28. Morise H., Shimomura O., Johnson F. H., Winant J. Intermolecular energy transfer in the bioluminescent system of Aequorea. Biochemistry. 1974 Jun 4;13(12):2656–2662. doi: 10.1021/bi00709a028. [DOI] [PubMed] [Google Scholar]
  29. Presswood R. P., Hastings J. W. Steps in the population of the emitter in the bacterial luciferase reaction. Photochem Photobiol. 1979 Jul;30(1):93–99. doi: 10.1111/j.1751-1097.1979.tb07120.x. [DOI] [PubMed] [Google Scholar]
  30. Ryerson C. C., Ballou D. P., Walsh C. Mechanistic studies on cyclohexanone oxygenase. Biochemistry. 1982 May 25;21(11):2644–2655. doi: 10.1021/bi00540a011. [DOI] [PubMed] [Google Scholar]
  31. Tu S. C., Baldwin T. O., Becvar J. E., Hastings J. W. Bacterial luciferase activity does not require a disulfide-dithiol conversion. Arch Biochem Biophys. 1977 Feb;179(1):342–348. doi: 10.1016/0003-9861(77)90120-5. [DOI] [PubMed] [Google Scholar]
  32. Tu S. C. Isolation and properties of bacterial luciferase-oxygenated flavin intermediate complexed with long-chain alcohols. Biochemistry. 1979 Dec 25;18(26):5940–5945. doi: 10.1021/bi00593a028. [DOI] [PubMed] [Google Scholar]
  33. Ulitzur S., Hastings J. W. Myristic acid stimulation of bacterial bioluminescence in "aldehyde" mutants. Proc Natl Acad Sci U S A. 1978 Jan;75(1):266–269. doi: 10.1073/pnas.75.1.266. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES