Skip to main content
The Journal of Headache and Pain logoLink to The Journal of Headache and Pain
. 2009 Dec 10;11(1):5–12. doi: 10.1007/s10194-009-0170-y

Does sumatriptan cross the blood–brain barrier in animals and man?

Peer Carsten Tfelt-Hansen 1,
PMCID: PMC3452191  PMID: 20012125

Abstract

Sumatriptan, a relatively hydrophilic triptan, based on several animal studies has been regarded to be unable to cross the blood–brain barrier (BBB). In more recent animal studies there are strong indications that sumatriptan to some extent can cross the BBB. The CNS adverse events of sumatriptan in migraine patients and normal volunteers also indicate a more general effect of sumatriptan on CNS indicating that the drug can cross the BBB in man. It has been discussed whether a defect in the BBB during migraine attacks could be responsible for a possible central effect of sumatriptan in migraine. This review suggests that there is no need for a breakdown in the BBB to occur in order to explain a possible central CNS effect of sumatriptan.

Keywords: Blood–brain barrier, Sumatriptan, Migraine, CNS, Animal studies, Human studies

Full Text

The Full Text of this article is available as a PDF (197.4 KB).

Acknowledgments

The study was supported by the Lundbeck Foundation via the Lundbeck Foundation Center for Neurovascular Signaling (LUCENS).

Conflict of interest

None.

References

  • 1.Tfelt-Hansen P, Vries P, Saxena PR. Triptans in migraine. A comparative review of pharmacology, pharmacokinetics and efficacy. Drugs. 2000;60:1259–1287. doi: 10.2165/00003495-200060060-00003. [DOI] [PubMed] [Google Scholar]
  • 2.Ferrari MD, Goadsby PJ, Roon KI, Lipton RB. Triptans (serotonin, 5-HT1B/1D agonists) in migraine: detailed results and methods of a meta-analysis of 53 trials. Cephalalgia. 2002;22:633–658. doi: 10.1046/j.1468-2982.2002.00404.x. [DOI] [PubMed] [Google Scholar]
  • 3.Saxena PR, Tfelt-Hansen P. Triptans, 5HT1B/1D agonists in the acute treatment of migraine. In: Olesen J, Goadsby PJ, Ramadan NM, Tfelt-Hansen P, Welch KMA, editors. The headaches. 3. Philadelphia: Lippincott Williams and Wilkins; 2006. pp. 469–503. [Google Scholar]
  • 4.Tfelt-Hansen P. Maximum effect of triptans in migraine? A comment. Cephalalgia. 2008;28:767–768. doi: 10.1111/j.1468-2982.2007.01415.x. [DOI] [PubMed] [Google Scholar]
  • 5.Hoskin KL, Goadsby PJ. Comparison of more and less lipophilic serotonin (5-HT 1B/1D) agonists in a model of trigeminovascular nociception in cat. Exp Neurol. 1998;150:45–51. doi: 10.1006/exnr.1997.6749. [DOI] [PubMed] [Google Scholar]
  • 6.Humphrey PP, Goadsby PJ. The mode of action of sumatriptan is vascular? A debate. Cephalalgia. 1994;14:401–410. doi: 10.1046/j.1468-2982.1994.1406401.x. [DOI] [PubMed] [Google Scholar]
  • 7.Humphrey PPA, Feniuk W, Perren MJ, Beresford IJM, Skingle M, Whalley ET. Serotonin and migraine. Ann N Y Acad Sci. 1990;600:587–598. doi: 10.1111/j.1749-6632.1990.tb16912.x. [DOI] [PubMed] [Google Scholar]
  • 8.Buzzi MG, Moskowitz MA. The antimigraine drug, sumatriptan (GR43175), selectively blocks neurogenic plasma extravasation from blood vessels in dura mater. Br J Pharmacol. 1990;99:202–206. doi: 10.1111/j.1476-5381.1990.tb14679.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR. Neurobiology of migraine. Neuroscience. 2009;161:327–341. doi: 10.1016/j.neuroscience.2009.03.019. [DOI] [PubMed] [Google Scholar]
  • 10.Goadsby PJ, Hoskin KL. Inhibition of trigeminal neurons by intravenous administration of the serotonin (5HT)1B/1D receptor agonist zolmitriptan (311C90): are brain stem sites therapeutic target in migraine? Pain. 1996;67:355–359. doi: 10.1016/0304-3959(96)03118-1. [DOI] [PubMed] [Google Scholar]
  • 11.Sleight AJ, Cervenka A, Peroutka SJ. In vivo effects of sumatriptan (GR 43175) on extracellular levels of 5-HT in the guinea pig. Neuropharmacology. 1990;29:511–513. doi: 10.1016/0028-3908(90)90061-U. [DOI] [PubMed] [Google Scholar]
  • 12.Kaube H, Hoskin KL, Goadsby PJ. Inhibition by sumatriptan of central trigeminal neurones only after blood–brain barrier disruption. Br J Pharmacol. 1993;109:788–792. doi: 10.1111/j.1476-5381.1993.tb13643.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Shepheard SL, Williamson DJ, Williams J, Hill RG, Hargreaves RJ. Comparison of the effects of sumatriptan and the NK1 antagonist CP-99, 994 on plasma extravasation in the dura mater and c-fos mRNA expression in the trigeminal nucleus caudalis of rats. Neuropharmacology. 1995;34:255–261. doi: 10.1016/0028-3908(94)00153-J. [DOI] [PubMed] [Google Scholar]
  • 14.Knyihár-Csillik E, Tajti J, Samsam M, Sáry G, Slezák S, Vécsei L. Effect of a serotonin agonist (sumatriptan) on the peptidergic innervation of the rat cerebral dura mater and on the expression of c-fos in the caudal trigeminal nucleus in an experimental migraine model. J Neurosci Res. 1997;48:449–464. doi: 10.1002/(SICI)1097-4547(19970601)48:5<449::AID-JNR6>3.0.CO;2-E. [DOI] [PubMed] [Google Scholar]
  • 15.Goadsby PJ, Knight YE. Direct evidence for central sites of action of zolmitriptan (311C90): an autoradiographic study in cat. Cephalalgia. 1997;17:153–158. doi: 10.1046/j.1468-2982.1997.1703153.x. [DOI] [PubMed] [Google Scholar]
  • 16.Goadsby PJ, Knight Y. Inhibition of trigeminal neurones after intravenous administration of naratriptan through an action at 5-hydroxytryptamine (5-HT (1B/1D) receptors. Br J Pharmacol. 1997;122:913–922. doi: 10.1038/sj.bjp.0701456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Cumberbatch MJ, Hill RG, Hargreaves RJ. Rizatriptan has central antinociceptive effects against durally evoked responses. Eur J Pharmacol. 1997;328:37–40. doi: 10.1016/S0014-2999(97)83024-5. [DOI] [PubMed] [Google Scholar]
  • 18.Goadsby PJ, Hoskin KL. Differential effects of low dose CP122, 288 and eletriptan on fos expression due to stimulation of the superior sagittal sinus in cat. Pain. 1999;82:15–22. doi: 10.1016/S0304-3959(99)00025-1. [DOI] [PubMed] [Google Scholar]
  • 19.Dixon CM, Saynor DA, Andrew J, Oxford J, Bradbury A, Talbit MH. Disposition of sumatriptan in laboratory animals and humans. Drug Metab Dispos. 1993;21:761–769. [PubMed] [Google Scholar]
  • 20.Johnson DE, Rollema H, Schmidt AW, McHarg AD. Serotonergic effects and extracellular brain levels of eletriptan, zolmitriptan and sumatriptan in rat brain. Eur J Pharmacol. 2001;425:203–210. doi: 10.1016/S0014-2999(01)01151-7. [DOI] [PubMed] [Google Scholar]
  • 21.Levy D, Jakubowski M, Burstein R. Disruption of communication between peripheral and central trigeminovascular neurons mediates the antimigraine action of 5-HT1B/1D receptor agonists. Proc Natl Acad Sci USA. 2004;101:4274–4279. doi: 10.1073/pnas.0306147101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Edelmayer RM, Vanderah TW, Majuta L, Zhang ET, Fioranvanti B, Felice M, et al. Medullary pain facilitating neurons mediate allodynia in headache-related pain. Ann Neurol. 2009;65:184–193. doi: 10.1002/ana.21537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 23.Vries P, Villalon CM, Saxena PR. Pharmacological aspects of experimental headache models in relation to acute antimigraine therapy. Eur J Pharmacol. 1999;375:61–74. doi: 10.1016/S0014-2999(99)00197-1. [DOI] [PubMed] [Google Scholar]
  • 24.Skingle M, Birch PJ, Leighton GE, Humphrey PPA. Lack of nociceptive activity of sumatriptan in rodents. Cephalalgia. 1990;10:207–212. doi: 10.1046/j.1468-2982.1990.1005207.x. [DOI] [PubMed] [Google Scholar]
  • 25.Read SJ, Hirst WD, Upton N, Parssons AA. Cortical spreading depression produces increased cGMP levels in cortex and brain stem that is inhibited by tonabersat (SB-220453) but not sumatriptan. Brain Res. 2001;891:69–77. doi: 10.1016/S0006-8993(00)03191-7. [DOI] [PubMed] [Google Scholar]
  • 26.Pardutz A, Szatmári E, Vecsel L, Schoenen J. Nitroglycerin-induced nNOS increase in rat trigeminal nucleus caudalis is inhibited by systemic administration of lysine acetylsalicylate but not of sumatriptan. Cephalalgia. 2004;24:439–445. doi: 10.1111/j.1468-2982.2004.00699.x. [DOI] [PubMed] [Google Scholar]
  • 27.Ingvardsen BK, Laursen H, Olsen UB, Hansen AJ. Possible mechanism of c-fos expression in trigeminal nucleus caudalis following cortical spreading depression. Pain. 1997;72:407–415. doi: 10.1016/S0304-3959(97)00069-9. [DOI] [PubMed] [Google Scholar]
  • 28.Ghehardini C, Galeotti N, Figini M, Imperato A, Nicolodi M, Sicuteri F, et al. The central cholinergic system has a role in the antinociception induced in rodents and guinea pigs by the antimigraine drug sumatriptan. J Pharmacol Exp Ther. 1996;279:884–890. [PubMed] [Google Scholar]
  • 29.Hoskin KL, Kaube H, Goadsby PJ. Sumatriptan can inhibit trigeminal afferents by an exclusively neural mechanism. Brain. 1996;119:1419–1428. doi: 10.1093/brain/119.5.1419. [DOI] [PubMed] [Google Scholar]
  • 30.Mitsikostas DD, Papadopoulou-Daifotis Z, Sfikakis A, Varonos D. The effect of sumatriptan on brain monoamines in rats. Headache. 1996;36:29–31. doi: 10.1046/j.1526-4610.1996.3601029.x. [DOI] [PubMed] [Google Scholar]
  • 31.Read SJ, Manning P, McNeil CJ, Hunter AJ, Parsons AA. Effect of sumatriptan on nitric oxide and superperoxide balance during glyceryl trinitrate infusion in the rat. Implications for antimigraine mechanisms. Brain Res. 1999;847:1–8. doi: 10.1016/S0006-8993(99)01985-X. [DOI] [PubMed] [Google Scholar]
  • 32.Read SJ, Parsons AA. Sumatriptan modifies cortical free radical release during cortical spreading depression. A novel antimigraine action for sumatriptan? Brain Res. 2000;870:44–53. doi: 10.1016/S0006-8993(00)02400-8. [DOI] [PubMed] [Google Scholar]
  • 33.Kayser V, Aubel B, Hamon M, Bourgoin S. The antimigraine 5-HT1B/1D receptor agonists, sumatriptan, zolmitriptan and dihydroergotamine, attenuate pain-related behaviour in a rat model of trigeminal neuropathic pain. Br J Pharmacol. 2002;137:1287–1297. doi: 10.1038/sj.bjp.0704979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Dobson CF, Tohyama Y, Diksic M, Hamel E. Effects of acute and chronic administration of anti-migraine drugs sumatriptan and zolmitriptan on serotonin synthesis in the rat brain. Cephalalgia. 2004;24:2–11. doi: 10.1111/j.1468-2982.2004.00647.x. [DOI] [PubMed] [Google Scholar]
  • 35.Bates EA, Nikai T, Brennan KC, Fu Y-H, Charles AC, Basbaum AI et al (2009) Sumatriptan alleviates nitroglycerin induced mechanical and thermal allodynia in mice. Cephalalgia (in press) [DOI] [PMC free article] [PubMed]
  • 36.Nozaki K, Moskowitz MA, Boccalini P. CP-93, 129, sumatriptan, dihydroergotamine block c-fos expression within rat trigeminal nucleus caudalis caused by chemical stimulation of the meninges. Br J Pharmacol. 1992;106:409–415. doi: 10.1111/j.1476-5381.1992.tb14348.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Moskowitz MA, Nozaki K, Kraig RP. Neocortical spreading depression provokes the expression of C-fos protein-like immunoreactivity within trigeminal nucleus caudalis via trigeminovascular mechanisms. J Neurosci. 1993;13:1167–1177. doi: 10.1523/JNEUROSCI.13-03-01167.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 38.Moskowitz MA, Kraig RP et al (1998) Comment on Invardesen et al, Pain 72 (1997) 407–415. Pain 76:265–266 [DOI] [PubMed]
  • 39.Millson DS, Tepper SJ, Rapoport AM. Migraine pharmacotherapy with oral triptans: a rational approach to clinical management. Expert Opin Pharmacother. 2000;1:391–404. doi: 10.1517/14656566.1.3.391. [DOI] [PubMed] [Google Scholar]
  • 40.Evans DC, O’Connor D, Lake BG, Evers R, Allen C, Hargreaves R. Eletriptan metabolism by human hepatic CYP450 enzymes and transport by human P-glycoprotein. Drug Metab Dispos. 2003;31:861–869. doi: 10.1124/dmd.31.7.861. [DOI] [PubMed] [Google Scholar]
  • 41.Kalvass JC, Maurer TS, Pollack GM. Use of plasma and brain unbound fractions to assess the extent of brain distribution of 34 drugs: comparison of unbound concentration ratios to in vivo p-glycoprotein efflux ratios. Drug Metab Dispos. 2007;35:660–666. doi: 10.1124/dmd.106.012294. [DOI] [PubMed] [Google Scholar]
  • 42.Pascual J, del Arco C, Romón T, del Olmo E, Castro E, Pazos A. Autoradiographic distribution of [3H]sumatriptan-binding sites in post-mortem human brain. Cephalalgia. 1996;16:317–322. doi: 10.1046/j.1468-2982.1996.1605317.x. [DOI] [PubMed] [Google Scholar]
  • 43.Castro ME, Pascual J, Romón T, del Arco C, del Olmo E, Pazos A. Differential distribution of [3H]sumatriptan binding sites (5-HT1B, 5-HT1D and 5-HT1F) in the human brain: focus on brain stem and spinal cord. Neuropharmacology. 1997;36:535–542. doi: 10.1016/S0028-3908(97)00061-0. [DOI] [PubMed] [Google Scholar]
  • 44.Gallagher RM, Kunkel R (2003) Migraine patient concerns affecting compliance: results from the NHF survey. Headache 43:36–43 [DOI] [PubMed]
  • 45.Goadsby PJ, Dodick D, Almas M, Diener H-C, Tfelt-Hansen P, Lipton RB, Parsson B. Treatment emergent CNS symptoms following triptan therapy are part of the migraine attack. Cephalalgia. 2007;27:254–262. doi: 10.1111/j.1468-2982.2007.01278.x. [DOI] [PubMed] [Google Scholar]
  • 46.Tfelt-Hansen P, Teall J, Rodriguez F, Giacovazzo M, Paz J, Malbecq W, Block GA, Reines SA, Visser WH, on behalf of the Rizatriptan 030 study Group Oral rizatriptan versus oral sumatriptan: a direct comparative study in the acute treatment of migraine. Headache. 1998;38:748–755. doi: 10.1046/j.1526-4610.1998.3810748.x. [DOI] [PubMed] [Google Scholar]
  • 47.Silberstein SD, Diener H-C, McCarrolll KA, Lines CR. CNS effects of sumatriptan and rizatriptan. Cephalalgia. 2004;24:78–79. doi: 10.1111/j.1468-2982.2004.t01-2-00610.x. [DOI] [PubMed] [Google Scholar]
  • 48.Barbanti P, Fabbrini G, Berardelli A. Acute pathological laughter induced by sumatriptan. Cephalalgia. 2008;28:92–93. doi: 10.1111/j.1468-2982.2007.01433.x. [DOI] [PubMed] [Google Scholar]
  • 49.Oterino A, Pascual J. Sumatriptan-induced axial dystonia in a patient with cluster headache. Cephalalgia. 1998;18:360–361. doi: 10.1046/j.1468-2982.1998.1806358-4.x. [DOI] [PubMed] [Google Scholar]
  • 50.López-Alemany M, Ferrer-Tuset C, Bernácer-Alpera B. Akathisia and acute dystonia induced by sumatriptan. J Neurol. 1997;244:131–133. doi: 10.1007/s004150050062. [DOI] [PubMed] [Google Scholar]
  • 51.Post J, Schram MT, Schoemaker RC, Pieters MS, Fuseau E, Pereira A, et al. CNS effects of sumatriptan an rizatriptan in healthy female volunteers. Cephalalgia. 2002;22:271–281. doi: 10.1046/j.1468-2982.2002.00344.x. [DOI] [PubMed] [Google Scholar]
  • 52.Proieletti-Cecchini P, Afra J, Schoenen J. Intensity dependence of cortical auditory evoked potential as a surrogate marker of central nervous system serotonin transmission in man: demonstration of a central effect for the 5HT1B/1D agonist zolmitriptan (311C90, Zomig) Cephalalgia. 1997;17:849–854. doi: 10.1046/j.1468-2982.1997.1708849.x. [DOI] [PubMed] [Google Scholar]
  • 53.Sullivan JT, Preston KL, Testa MP, Busch M, Jasinski DR. Psychoactivity and abuse potential of sumatriptan. Clin Pharmacol Ther. 1992;52:635–642. doi: 10.1038/clpt.1992.202. [DOI] [PubMed] [Google Scholar]
  • 54.Sakai Y, Dobson C, Diksic M, Aubé M, Hamel E. Sumatriptan normalizes the migraine attack-related increase in brain serotonin synthesis. Neurology. 2008;70:431–439. doi: 10.1212/01.wnl.0000299095.65331.6f. [DOI] [PubMed] [Google Scholar]
  • 55.Göbel H, Krapat S, Dworschak M, Heuss D, Ensink FB, Soyka D. Exteroceptive suppression of temporalis muscle activity during migraine attack and migraine interval before and after treatment with sumatriptan. Cephalalgia. 1994;14:143–148. doi: 10.1046/j.1468-2982.1994.1402143.x. [DOI] [PubMed] [Google Scholar]
  • 56.Göbel H, Krapat S, Ensink FB, Soyka D. Comparison of contingent negative variation between migraine interval and migraine attack before and after treatment with sumatriptan. Headache. 1993;33:570–572. doi: 10.1111/j.1526-4610.1993.hed3310570.x. [DOI] [PubMed] [Google Scholar]
  • 57.Thomaides T, Tagaris S, Karageorgiou C. EEG and topographic frequency analysis in migraine attack before and after sumatriptan infusion. Headache. 1996;36:111–114. doi: 10.1046/j.1526-4610.1996.3602111.x. [DOI] [PubMed] [Google Scholar]
  • 58.Koran LM, Pallanti S, Quercioli L. Sumatriptan, 5-HT(1D) receptors and obsessive-compulsive disorder. Eur J Neuropsychopharmacol. 2001;11:169–172. doi: 10.1016/S0924-977X(01)00082-7. [DOI] [PubMed] [Google Scholar]
  • 59.Pian KL, Westenberg HG, Megen HJ, Boer JA. Sumatriptan (5-HT1D receptor agonists) does not exacerbate symptoms in obsessive compulsive disorder. Psychopharmacology (Berl) 1998;140:365–370. doi: 10.1007/s002130050777. [DOI] [PubMed] [Google Scholar]
  • 60.McCann GP, Cahill H, Knipe S, Muir DF, MacIntyre PD, Hillis WS. Sumatriptan reduces exercise capacity in healthy males: a peripheral effect of 5-hydroxytryptamine agonism? Clin Sci (Lond) 2000;98:643–648. doi: 10.1042/CS19990249. [DOI] [PubMed] [Google Scholar]
  • 61.Dodick DW, Martin V. Triptans and CNS-side effects: pharmacokinetic and metabolic mechanisms. Cephalalgia. 2004;24:417–424. doi: 10.1111/j.1468-2982.2004.00694.x. [DOI] [PubMed] [Google Scholar]
  • 62.Fox AW. Comparative tolerability of oral 5-HT1B/1D agonists. Headache. 2000;40:521–527. doi: 10.1111/j.1526-4610.2000.00083.x. [DOI] [PubMed] [Google Scholar]
  • 63.Pascual J, Muñoz P. Correlation between lipophilicity and triptan outcomes. Headache. 2005;45:3–6. doi: 10.1111/j.1526-4610.2005.05003.x. [DOI] [PubMed] [Google Scholar]
  • 64.Cady RK, Wendt JK, Kirchner JR, Sargent JD, Rothrock JF, Skaggs H. Treatment of acute treatment with subcutaneous sumatriptan. JAMA. 1991;265:2831–2835. doi: 10.1001/jama.265.21.2831. [DOI] [PubMed] [Google Scholar]
  • 65.Subcutaneous Sumatriptan International Study Group Treatment of migraine attacks with sumatriptan. N Eng J Med. 1991;325:316–321. doi: 10.1056/NEJM199108013250504. [DOI] [PubMed] [Google Scholar]
  • 66.Geraud G, Olesen J, Pfaffenrath V, Tfelt-Hansen P, Zupping R, Diener H-C, Sweet R, on behalf of the Study Group Comparison of the efficacy of zolmitriptan and sumatriptan: issues in migraine trial design. Cephalalgia. 2000;20:30–38. doi: 10.1046/j.1468-2982.2000.00004.x. [DOI] [PubMed] [Google Scholar]
  • 67.Ahnn AH, Basbaum AI. Where do triptans act in the treatment of migraine? Pain. 2005;115:1–4. doi: 10.1016/j.pain.2005.03.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Bonaventure P, Voorn P, Luyten WH, Leysen JE. 5HT1B and 5HT1D receptor mRNA differential colocalization with peptide mRNA in the guinea pig trigeminal ganglion. Neuroreport. 1998;9:641–645. doi: 10.1097/00001756-199803090-00015. [DOI] [PubMed] [Google Scholar]
  • 69.Lin H, Oksenberg D, Ashkanazi A, Peroutka S, Duncan A, Rozmahel R, et al. Characterization of the human 5-hydroxytryptamine1b receptor. J Biol Chem. 1992;267:5735–5738. [PubMed] [Google Scholar]
  • 70.Popper K. The logic of scientific discovery. New York: Basic Books; 1959. [Google Scholar]
  • 71.Edvinsson L, Tfelt-Hansen P. The blood–brain barrier in migraine treatment. Cephalalgia. 2008;28:1245–1258. doi: 10.1111/j.1468-2982.2008.01675.x. [DOI] [PubMed] [Google Scholar]
  • 72.Weiller C, May A, Limroth V, Jüpter M, Kaube H, Schayck RV, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1:658–660. doi: 10.1038/nm0795-658. [DOI] [PubMed] [Google Scholar]
  • 73.Afridi SK, Matharu MS, Lee L, Kaube H, Friston KJ, Frackowick RS, et al. A PET study exploring the laterality of brainstem activation in migraine using glyceryl trinitrate. Brain. 2005;128:932–939. doi: 10.1093/brain/awh416. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Headache and Pain are provided here courtesy of BMC

RESOURCES